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Abstract

In this paper, we will show some mathematical properties for a nonlinear system of partial differential
equations, which describe the dynamics of internal motions of an exponentially stratified fluid in three-
dimensional space. Basically, we will study the existence and uniqueness of the weak solution for our system
of partial differential equations involving the nonlinear advection term on a finite interval.

Keywords: Stratified fluids; Non-viscous fluids; Nonlinear advection term; System of partial
differential equations; Sobolev spaces; Galerkin method.
2010 MSC: 49J20, 49K20, 35Q35, 93C20.

1. Introduction

By stratified fluids, we mean those whose density varies spatially; this continuous density variation
influences the fluid dynamics. Here we consider stratified fluids in bounded domains with a certain regularity
at the border, which corresponds to an initial density distribution in a homogeneous gravitational field so
that the results obtained here can find an application in models of the atmosphere and the ocean.
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These systems came to the attention of Russian researchers in the article by S. Sobolev (”On a new
problem of mathematical physics”), see in [22]; where a system of equations is introduced as a description
the dynamics of these fluids. Later, other great mathematicians of the time appeared who continued to
develop generalizations of Sobolev’s systems, among them Maslennikova, who, along with several of her
students, steered studies on the asymptotic behavior of these systems, see in [15], [16], [17], among others.

They also made a complete study for the two-dimensional case in [18], as well as various properties of
the system solutions that model the small oscillations of a rotating fluid. For example, Maslennikova and
P. P. Kumar also worked on stabilization and limit amplitude problems for inhomogeneous Sobolev systems
in [19]. An article that has been of significant help in carrying this investigation; is the one carried out
by Maslennikova and A. Giniatoulline, who studied the spectral properties of operators for hydrodynamics
systems of a rotating fluid, see in [20]. For more articles related to this type of system, see in [9]. The
arrival of these systems was of foremost importance since they are not Kovalevskaya-type systems; they are
systems whose solutions are not obtained in terms of higher order derivatives. Another result that we will
mention below is related to the Euler equations, which can be consulted in [23]. In that paper, they studied
the system given by 

∂v

∂t
+ (v · ∇)v +∇p = f in Ω× (0, T ),

div(v) = 0 in Ω× (0, T ),

v(x, 0) = v0 in Ω,

(1)

with boundary conditions u ·n = 0. They got solutions with some nicely regular properties; see, for example,
the theorem given on page 12 of [23]. Moreover, one of the authors treated a more regular part of this system,
for example, in [12], having success obtaining solutions with some friendly classical properties due to the
presence of a dissipative term. Therefore, the properties described in this article are novel and valuable
since we do not have the system’s regulator.

We will study the existence and uniqueness of the solutions for the following system:

∂v1
∂t

+ v · ∇v1 +
∂p

∂x1
= 0,

∂v2
∂t

+ v · ∇v2 +
∂p

∂x2
= 0,

∂v3
∂t

+ gρ+ v · ∇v3 +
∂p

∂x3
= 0,

∂ρ

∂t
− N2

g
v3 = 0,

∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

= 0,

(2)

where x = (x1, x2, x3) denotes the spatial variable, and v = v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) denotes the
velocity field of the fluid. Here we have N and g positive constants. The last equation for the nonlinear
system is because our fluid is incompressible, p denotes the scalar field of the dynamic pressure, and ρ
represents the dynamic density. On the other hand, it is admitted that at time t = 0, the velocity and the
density

v(x, 0) = v0(x) and ρ(x, 0) = ρ0(x), (3)

are known data, we also assume that the following boundary conditions hold at ∂Ω, that is,

v

∣∣∣∣
∂Ω

= 0 and ρ

∣∣∣∣
∂Ω

= 0, (4)
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for x ∈ Ω ⊂ R3 and t > 0, where ρ0 = e−Nx3 denotes the initial density before the perturbation and Ω is a
bounded domain with smooth boundary. For this, we will show that there are functions v and p defined in
(0, T∗) satisfying that v ∈ L∞((0, T ),Wm,p(Ω)3) and p ∈ L∞((0, T∗),W

m+1,p(Ω)), where T∗ < inf(T ;T1)
3,

and also satisfy equations (2), (3) and (4), then we apply Galerkin’s method defining an approximate solution
for our system.

vn(x, t) =
n∑

j=1

gjn(t)wj(x),

which is bounded in L2((0, T );L2(Ω)3) and L∞((0, T∗);H
m(Ω)3) for all T∗ < inf(T, T0) in the same way vtn

in L∞((0, T∗);H
m(Ω)3) for all T∗ < inf(T, T0), in this way, we can obtain a local solution of the equation

using the limit step by a compactness argument.
We distribute the paper in six sections. Section 1 introduces and describes the problem; later, in Section

2, we show some basic notations to understand the problem. Section 3 presents the equations of motion for
the nonlinear system. In section 4, we study the problem using an approximate solution applying Galerkin’s
method. In section 5, we will show the existence and uniqueness of the solution for the nonlinear system
given by (2); finally, section 6 concludes this work.

2. Previous Definitions and Notations

Before starting with the study and analysis of our nonlinear problem, we introduce some previous
elements and the necessary notation to understand the dynamics of non-viscous and incompressible stratified
fluids in R3, considered in our paper.

Let Ω be a domain of the space R3, and let p in R, such that 1 ≤ p ≤ ∞. A function f : Ω −→ R (or C),
is said to belong to Lp(Ω), if f is measurable and the norm

∥f∥Lp(Ω) =



(∫
Ω
|f(x)|p dx

)1/p

si 1 ≤ ∞,

ess sup
x∈Ω

|f(x)| si p = ∞,

is finite. The spaces Lp(Ω) are Banach spaces, (see [7] and [10]). Furthermore, in the spaces Lp(Ω) the Hölder

Inequality is fulfilled, which ensures that, for f ∈ Lp(Ω) and v ∈ Lq(Ω) with
1

p
+

1

q
= 1 for 1 ≤ p, q ≤ ∞, it

holds: ∫
Ω
|f(x)v(x)|dx ≤ ∥f(x)∥Lp(Ω) · ∥v(x)∥Lq(Ω).

In particular, when we have that p = 2, then L2(Ω) is a Hilbert space with scalar product, (see [8])

(f, v)2 =

∫
Ω
f(x) · v(x) dx.

We remember that L2(Ω) is one of the essential Hilbert spaces in the mathematical analysis since they
appear very frequently in the study of partial differential equations, and it is the space where the kinetic
energy is automatically well defined.

As the variational form of a mathematical physics problem appears, we cross the Sobolev’s spaces, (see
[10]), denoted by Wm,p(Ω), and defined as the set of all functions f(x) ∈ Lp(Ω) that have all the generalized
derivatives up to the order p, which also belong to Lp(Ω), this is,

Wm,p(Ω) = {f ∈ Lp(Ω) such that Dαf ∈ Lp(Ω) for all α ∈ Nn : |α| ≤ m},
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which is contained in Lp(Ω). The associated norm defined in this space is given by

∥f∥Wm,p(Ω) =

 ∑
|α|≤m

∥Dαf∥pLp(Ω)

1/p

,

where Dαf is the weak derivate of order α. We also find other types of Sobolev spaces such as W k,p
0 (Ω).

Note that when p = 2, we can simply write Hm(Ω) and Hm
0 (Ω) instead of Wm,2(Ω) and Wm,2

0 (Ω)
respectively, (see for example [1]). Furthermore, remember that when m = 1 and p = 2, we have that the
space W 1,2(Ω) is better known as H1(Ω), since it is a Hilbert space, endowed with the scalar product:

(f, g)H1(Ω) =

∫
Ω
f(x) · g(x) dx+

∫
Ω
∇f(x) · ∇g(x) dx for all f, g ∈ H1(Ω),

where

∇f =

(
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

)
,

and

∇g =

(
∂g

∂x1
,
∂g

∂x2
,
∂g

∂x3

)
.

The norm induced by the previous scalar product is given by

∥f∥H1(Ω) =

(
∥f∥2L2(Ω) +

3∑
i=k

∥∥∥∥ ∂f∂xi
∥∥∥∥2
L2(Ω)

)1/2

.

On the other hand, let us denote the space of functions by D(Ω) such that φ : Ω −→ R of class C∞(Ω) with
compact support and by D′(Ω) the space of distributions on Ω.

Throughout this paper, we will use the standard notations for Lebesgue and Sobolev spaces as found in
[5], in particular the norm in L2(Ω) and the scalar product in L2(Ω) will be represented by ∥ · ∥ and (·, ·)
respectively.

Let us define

(u, v) :=

∫
Ω

3∑
j=1

uj · vj dx, u = (u1, u2, u3), v = (v1, v2, v3) ∈ L2(Ω)3,

((u, v)) :=

∫
Ω

3∑
j=1

∇uj · ∇vj dx, u = (u1, u2, u3), v = (v1, v2, v3) ∈ H1
0(Ω)

3,

and the associated norms are given from | u |2:= (u, u) and ∥u∥2 := ((u, u)).
Consider the following notation for the solenoidal Banach spaces H and V, which intrinsically satisfy

the condition ∇ · v = 0, and which we can represent as:

H = {v ∈ L2(Ω)3 : ∇ · v = 0 in Ω; γnv = 0 on ∂Ω},

and

V = {v ∈ H1
0 (Ω)

3 : ∇ · v = 0 in Ω}. (5)

Here, ∇·v denotes the divergence of v and let γn denote the normal component of the trace operator, where

γn : v 7−→ n · v
∣∣∣∣
∂Ω

= 0, here n denotes the external normal to the boundary.
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These spaces are frequently used in equations that model the dynamics of inviscid and incompressible
stratified fluids in R3 and are defined as the closure of Θ in L2(Ω)3 and of Θ in H1

0(Ω)
3 respectively, where

Θ = {v ∈ D(Ω)3 : ∇ · v = 0 in Ω}.

It is well-known that H and V are Hilbert spaces with the scalar product (·, ·) and ∥ · ∥ respectively.
The spectral theorem [11] is the key to the theory we are developing. This theorem tells us that every

self-adjoint compact operator is diagonalizable.

Theorem 2.1 (Spectral Theorem).
Let T ∈ L(H) be a compact self-adjoint operator. Then, there is an orthonormal system {xn} of eigenvectors
of T and its corresponding sequence of eigenvalues λn such that for each x ∈ H, we have that

Tx =
∑
n

λn⟨x, xn⟩xn.

The sequence λn is decreasing and if it is infinity converges to 0.

Now, let’s recall some classical results that we will need apply Galerkin’s method later.

Theorem 2.2 ([13], Riesz Theorem).
Every bounded linear functional f on a Hilbert space H can be represented in terms of the inner product,
namely,

f(x) = ⟨x, y⟩ with x ∈ H,

where y depends on f , is uniquely determined by f and has norm

∥y∥ = ∥f∥.

Theorem 2.3 ([10], Rellich-Kondrachov Theorem).
Let U be an open and bounded subset on Rn and ∂U is C1. If (um)m∈N is a sequence in H1(U) with
um −→ u, then um −→ u in L2(U). In particular, by weak compactness any sequence in H1(U) has a
subsequence that is convergent in L2(U).

3. Equations of Motion for the Nonlinear System

Let us consider a non-viscous fluid that occupies a region Ω ⊂ R3 subject only to the action of gravity
with boundary Σ = ∂Ω×(0, T ), smooth enough (at least Lipschitz continuous) and we defineQT := Ω×(0, T )
as the domain of our model where the motion of the fluid takes place, (see in [4]). In this case, T > 0; (0, T )
is the time interval and t ∈ (0, T ) is the temporal variable.
The equations describing the fluid’s motion at Ω ⊂ R3 are

a =
∂v

∂t
+ (v · ∇)v (6)

and
d

dt

∫
V
ρ dV = 0. (7)

Let us note that ∫
V

(
∂ρ

∂t
+ v∇ρ+ ρ∇v

)
dV = 0. (8)
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By applying Newton’s second law, we obtain an equation for the forces acting on the fluid, which is

d

dt

∫
V
ρv dV = F + FS . (9)

Where F =

∫
V
ρf dV , is the external force, FS = −

∫
S
pn dS, is the force on the surface and f is the given

force per unit mass.
After using the divergence theorem, we get

FS = −
∫
S
pn dS = −

∫
V
∇p dV. (10)

As a consequence of (10), the equation (9) becomes∫
V

[
d

dt
(ρv) + ρv(∇v)

]
dV =

∫
V
[ρf −∇p] dV. (11)

Keeping in mind the equation, (8), and the relation

d

dt
(ρv) + ρv(∇v) = ρ

dv

dt
+ v

(
dρ

dt
+ ρ∇v

)
,

the left hand side of (11) is transformed in∫
V
ρ
dv

dt
=

∫
V
[ρf −∇p] dV. (12)

Given the arbitrary nature of V and the fact
dv

dt
=

∂v

∂t
+ (v · ∇)v, we obtain that

∂v

∂t
+ (v · ∇)v +

∇p

ρ
= f. (13)

Now, if we incorporate the gravitational force acting vertically, and the Coriolis force in the equation (13)
−2Ω× v; emerging in a situation where a coordinate system rotates at the angular frequency Ω such as the
case of the Earth’s rotation, results in the following outcome.

∂v

∂t
+ (v · ∇)v = −∇p

ρ
− g∇z − 2Ω× v. (14)

On the other hand, we derive the equation of state p = p(ρ, s), we know that

dp

dt
= c2

dρ

dt
, (15)

where c2 =
∂p

∂ρ
. For more information (see [4], Part II Fluid Mechanics).

When contemplating an incompressible fluid, it becomes apparent that the following equation serves as
its representative model.

∂ρ

dt
+∇(ρv) = 0. (16)

If the earth’s rotation is not considered, we have that Ω× v = 0. Therefore, we have that ∇p0 = gρ0e0.
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By downplaying the significance of the nonlinear terms involving v, p′, and ρ′, we arrive at the subsequent

model that warrants investigation. We start from the fact that ρ = ρ0 + ρ′ and p = p0 + p′ thus
∂ρ

∂t
=

∂ρ′

∂t
and ∇p = ∇p0 +∇p′, then

d

dt
(p) =

∂

∂t
(p) + v∇p =

∂

∂t
(p′) + v∇p0 + v∇(p′).

In this way, we obtain the following approximation

d

dt
(p) ∼=

∂

∂t
(p′) + v∇p0.

Now, we take

∇(ρv) = ∇((ρ0 + ρ′)v)
∼= ∇(ρ0v)

= ∇ρ0v + ρ0 div (v)

dρ

dt
=

∂

∂t
(ρ0 + ρ′) + v∇(ρ0 + ρ′)

=
∂

∂t
ρ′ + v∇ρ0 + v∇ρ′

=
∂

∂t
ρ′ + v∇ρ0.

Therefore,

dρ

dt
=

∂

∂t
ρ′ +

∂

∂x3
ρ0v3.

On the other hand, we have

1

ρ
=

1

ρ0 + ρ′
=

1

ρ0

(
1 +

ρ′

ρ0

) ∼=
1

ρ0

(
1− ρ′

ρ0

)
.

Then, we calculate the following quotient

∇p

ρ
=

∇p0 +∇p′

ρ0

(
1 +

ρ′

ρ0

)
=

(∇p0 +∇p′)

ρ0

(
1− ρ′

ρ0

)
=

1

ρ0
∇p0 −

1

ρ0

∇p0
ρ0

ρ′ +
∇p′

ρ0
− ∇p′

ρ0
· ρ

′

ρ0

∼=
1

ρ0
∇p0 +

1

ρ0

∇p0
ρ0

ρ′ − ∇p′

ρ0
.

Hence,

−∇p

ρ
− g∇z = −∇p′

ρ0
+

1

ρ0

∇p0
ρ0

ρ′. (17)
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So, the equation (6) becomes

∂v

∂t
+ (v · ∇)v = −∇p′

ρ0
+

1

ρ0

∇p0
ρ0

ρ′ = −∇p′

ρ0
+

1

ρ0
(−ge3)ρ

′,

in consequence
∂v

∂t
+ (v · ∇)v +

∇p′

ρ0
+

gρ′

ρ0
e3 = 0. (18)

The equation (16) reduces to

∂

∂t
ρ′ +∇ρ0v + ρ0 div(v) = 0 =⇒ ∂

∂t
ρ′ +

∂

∂x3
ρ0v3 + ρ0 div(v) = 0.

Now, since

∂

dt
(p′) + v∇p0 = c2

(
∂

∂t
ρ′ +

∂

∂x3
ρ0v3

)
,

then

∂

∂t
ρ′ =

1

c2
∂

dt
p′ +

1

c2
v∇p0 −

∂

∂x3
ρ0v3

=
1

c2
∂

dt
p′ − 1

c2
gρ0v3 −

∂

∂x3
ρ0v3

=
1

c2
∂

dt
p′ +

ρ0
g

(
−g2

c2
− g

ρ0

∂

∂x3
ρ0

)
v3.

In this way, it follows that
∂

∂t
ρ′ =

1

c2
∂

dt
p′ +

ρ0
g
N2(t)v3, (19)

where N2(t) = −g

(
ρ−1
0

∂

∂x3
ρ0 +

g

c2

)
.

Note that if c = ∞, we obtain the following nonlinear system of partial differential equations

∂v

∂t
+ (v · ∇)v +

∇p′

ρ0
+

gp′

ρ0
e3 = 0

div(v) = 0

∂

∂t
ρ′ =

ρ0
g
N2(t)v3,

(20)

in which N2(t) = −g

(
ρ−1
0

∂

∂x3
ρ0

)
.

4. Qualitative Analysis for the Nonlinear System

Studying the dynamics of fluids with exponential stratification, such as the ocean and atmosphere, is
essential. This understanding is crucial if we want to create a machine to purify the air circulating in various
locations within a city. Similarly, the same knowledge is necessary for situations related to the ocean.
We examine fluids that are stratified and have varying densities based on height, following an exponential
pattern. This characteristic influences the fluid’s dynamics. Although physicists, mechanical and mechanical
engineers have studied these types of fluids, they have mostly focused on the linear model and the two-
dimensional scenario. There is limited information on the velocity field when nonlinear terms are present
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in the model and viscosity is absent. In this section, we will study the following model that describes the
dynamics of an exponentially stratified fluid in the absence of viscosity.

We continue with the study of our system of nonlinear partial differential equations given by equation
(2). Note that we can represent it in vector form as follows

∂v

∂t
+ (v · ∇)v +∇p+ gρe3 = 0,

∂ρ

∂t
− N2

g
ve3 = 0,

div(v) = 0,

(21)

We associate the previous system (21) with the initial conditions

v(x, 0) = v0(x) ; ρ(x, 0) = ρ0(x), (22)

and the Dirichlet boundary conditions

v

∣∣∣∣
∂Ω

= 0 y ρ

∣∣∣∣
∂Ω

= 0, (23)

for x ∈ Ω ⊂ R3 and t > 0, where ρ0 = e−Nx3 denotes the initial density before the perturbation and Ω is a
bounded domain with smooth boundary.

We introduce the following definition of a weak solution

Definition 4.1 (Weak Solution).
Let 0 < T < ∞. As a weak solution for the system (21) to (23), we understand the pair of functions (v, ρ)
such that ρ(t, x) ∈ L∞((0, T );L2(Ω)) and v(t, x) ∈ L∞((0, T );H) ∩ L2((0, T );V) such that the following
identities are satisfied ∫ T

0
{⟨v, ϕt⟩+ ⟨v, (v · ∇)ϕ⟩ − g⟨ρe3, ϕ⟩} dt+ ⟨v(0), ϕ(0)⟩ = 0, (24)

and ∫ T

0
⟨ρ, φt⟩+

N2

g
⟨v · e3, φ⟩dt+ ⟨ρ0(x), φ(0)⟩ = 0, (25)

for all ϕ ∈ C1((0, T );V) and φ ∈ C1((0, T );L2(Ω)) with ϕ(T ) = 0 and φ(T ) = 0.

As motivation for this generalized solution definition, let us note that these identities are satisfied for
smooth solutions, as we can see below.

Indeed:
Let v, ϕ be functions such that each of the terms that appear makes sense, then

d

dt
⟨v, ϕ⟩ = ⟨vt, ϕ⟩+ ⟨v, ϕt⟩.

Now, integrating from 0 to T we get:

⟨v(T ), ϕ(T )⟩ − ⟨v(0), ϕ(0)⟩ =
∫ T

0
{⟨vt, ϕ⟩+ ⟨v, ϕt⟩} dt.

On the other hand, if ϕ is such that ϕ(T ) = 0, it follows that

−
∫ T

0
⟨vt, ϕ⟩ dt =

∫ T

0
⟨v, ϕt⟩ dt+ ⟨v(0), ϕ(0)⟩. (26)
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Now, using integration by parts, we can see that

−⟨∆v, ϕ⟩ = ⟨∇v,∇ϕ⟩. (27)

Similarly, using integration by parts, we can see that

−⟨(v · ∇)v, ϕ⟩ = ⟨v, (v · ∇)ϕ⟩. (28)

Indeed:

⟨(v · ∇), ϕ⟩ = ⟨v · ∇v1, ϕ1⟩+ ⟨v · ∇v2, ϕ2⟩+ ⟨v · ∇v3, ϕ3⟩,

Now,

⟨v · ∇vi, ϕi⟩ =
3∑

j=1

〈
vj

∂vi
∂xj

, ϕi

〉

=

3∑
j=1

∫
Ω
(vjϕi)

∂vi
∂xj

dx

= −
3∑

j=1

∫
Ω
vi
∂(vjϕi)

∂xj
dx+

=0︷ ︸︸ ︷
boundary terms

= −⟨vi, div(ϕiv)⟩
= −⟨vi, v · ∇ϕi + ϕidiv(v)⟩
= −⟨vi, v · ∇ϕi⟩.

In this way, if we add in i for i = 1 to i = 3 we obtain (28).
Similarly from (26) we get that:

−
∫ T

0

〈
d

dt
ρ, φ

〉
dt =

∫ T

0
⟨ρ, φt⟩ dt+ ⟨ρ0(x), φ(0)⟩, (29)

for all φ such that φ(T ) = 0.
Thus, if (24) and (25) hold, then it follows that (26), (27), (28) and (29) imply that∫ T

0
⟨vt + (v · ∇)v + gρe3, ϕ⟩ dt = 0,

and ∫ T

0

〈
dρ

dt
− N2

g
v · e3, φ

〉
dt = 0.

Therefore, there exists a function p(x, t) such that

vt + (v · ∇)v + gρe3 = −∇p(x, t)

and

dρ

dt
− N2

g
v3 = 0.
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The primary goal of our paper is to demonstrate a theorem of existence and uniqueness of solutions.
The solutions of the theorem will be obtained through limits of approximate solutions, so we will first
offer a section on creating these solutions using Galerkin’s approach. Galerkin’s method is a mathematical
technique for solving variational problems in infinite-dimensional spaces. By approximating the problem in a
sequence of finite-dimensional subspaces, we can find a solution that is easier to study. Once we have solved
the problem in this type of space, we can extend it to infinite-dimensional spaces using limits, ultimately
constructing a solution to the initial problem. For more information, (see [14]).

Along with its theoretical significance, Galerkin’s method also offers a practical approximation approach
that will prove vital in our subsequent analysis.

For our purpose, let m fixed, consider the space Xm ⊂ Hm(Ω)3, where

Xm = {v ∈ Hm(Ω)3 : ∇ · v = 0 and v

∣∣∣∣
∂Ω

= 0}, (30)

endowed with the inner product in a Hilbert space ⟨·, ·⟩m.

4.1. Construction of Approximate Solutions

We shall use Galerkin’s approach to demonstrate the existence of a solution. But first, we will build a
Hilbert basis (wk)k∈N of the space Xm ⊂ Hm(Ω), which we will describe later. Then, with the basis
selected, Galerkin’s approach will help us in projecting our system into the subspaces Hm(Ω), which are
generated by the vectors w1, w2, . . . wN for N ∈ N. As a result, we have an ordinary differential equations
system defined in Euclidean space that has a solution on some interval [0, TN ], as guaranteed by the Cauchy-
Lipschitz theorem. Consequently, we must ensure that the TN are not dependent on N and that the solutions
are additionally uniformly bounded in Hm(Ω).

Finally, we will apply a compactness argument to derive a local solution for the system passing to the
limit.

It can be observed from the equation (30) that when m is equal to zero, the space X0 is obtained, which
is a closed subspace of L2(Ω)3 due to the continuity of the divergence and the trace operators. Additionally,
it is true that Xm is a subset of X0.

According to the Riesz Theorem given by (2.2), for each g ∈ X0, there exists a corresponding w ∈ Xm

that satisfies the condition

⟨w, v⟩m = ⟨g, v⟩.

If u and v belong to X0, then there are unique w(u) and w(v) in Xm such that:

⟨w(u), g⟩m = ⟨u, g⟩ for all g ∈ Xm

and

⟨w(v), h⟩m = ⟨v, h⟩ for all h ∈ Xm.

Therefore, we have

⟨w(u), w(v)⟩m = ⟨u,w(v)⟩ and ⟨w(v), w(u)⟩m = ⟨v, w(u)⟩.

The last equation implies

⟨w(v), u⟩ = ⟨v, w(u)⟩. (31)

Consequently, the equation (31) shows that the operator we defined above, w : g −→ w(g), is a self-adjoint
operator on X0.
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Taking the compact injection ι : Xm −→ X0 and applying the Rellich-Kondrachov Theorem given by
(2.3), we may conclude that the operator.

w : X0 −→ X0

g 7−→ w(g), (32)

is also compact (taking the composition between the identity map and w, considering that the composition
between a continuous linear operator and a compact operator is also compact).

Because w is a self-adjoint and compact operator (using the spectral theorem for self-adjoint compact
operators), it has a complete orthonormal family of eigenvectors wk, with wk ∈ Xm such that

⟨wk, v⟩m = λk⟨wk, v⟩ for all v ∈ Xm. (33)

We can now use Galerkin’s technique and the base we found in (33), to get an approximate solution to our
problem. For a natural number n, we need to find solutions for system (2) of the form:

vn(x, t) =

n∑
j=1

gjn(t)wj(x).

where the coefficients gjn in C1[0, T ] are unknown. The expression ρn(x, t) can be written without loss of
generality as:

ρnt (x, t) =
N2

g
vn · e3 and ρn

∣∣∣∣
t=0

= ρ0(x). (34)

For the more general case, ρ0(x) we can rewrite it as the limit of a sequence (ρ0n(x)) ⊂ C1(Ω) and we will
solve the initial value problem given by (34).

Our objective is to demonstrate the existence of functions called gjn(t).
To do so, we can substitute vn(x, t) in (24) and select ϕ(x, t) = H(t)wk(x), where H(t) ∈ C1([0, T ]) and

H(T ) = 0. This yields the following equation:∫ T

0
{⟨vnt + (vn · ∇)vn + gρne3, wk⟩}H(t) dt = 0.

Since H(t) is arbitrary, we can obtain the approximate system for k = 1, 2, ......., n:

⟨vnt + (vn · ∇)vn + gρne3, wk⟩ = 0. (35)

We can express equation (35) using the base provided in (33).(
d

dt

)
⟨vn, wk⟩+ ((vn · ∇)vn, wk) = ⟨−gρne3, wk⟩,

vn(0) = v0n = PnV0.

(36)

Where Pn represents the orthogonal projection onto either X0 or Xm, generated by w1, . . . , wk. The
equations (35) and (36) can be transformed into a system of integro- differential equations in the variables
gjn(t). This system can be simplified further into an autonomous first-order system of differential equations,
as shown below:

For k = 1, 2, 3, . . . , n we have that

(vnt , wk) =

 n∑
j=1

g′jn(t)wj , wk

 ,

=
n∑

j=1

g′jn(t)(wj , wk),

= g′jn(t).

(37)
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Similarly

(vn · ∇)vn, wk) =

n∑
j=1

((vn · ∇)vnwj , wk)gjn(t),

=

n∑
i=1

n∑
j=1

((wi · ∇)wi, wk)gin(t)gjn(t),

=
n∑

i=1

n∑
j=1

Ck
ijgin(t)gjn(t).

(38)

Where Ck
ij = ((wi · ∇)wi, wk).

When looking at equation (34), we can determine the density using the following expression:

ρn(x, t) = ρ0(x) +

∫ t

0
vn(x, s)e3 ds,

= ρ0(x) +

∫ t

0

n∑
j=1

wj(x)e3gjn(s) ds.
(39)

Therefore, it can be inferred that.

(ρn(x, t)e3, wk) = ⟨ρ0(x)e3, wk⟩+
∫ t

0

n∑
j=1

⟨(wj(x)e3)e3, wk⟩gjn(s) ds.

We substitute (37), (38) (39) in equation (36), and take X(t) such that

X(t) = (g1n(t), g2n(t), ........, gnn(t)),

the system (36) is equivalent to

X ′(t) = F (x, t) +

∫ t

0
G(x, s) ds, (40)

where

F (x) =


xTM1X
xTM2X

...
xTMnX

+


⟨ρ0(x)e3, w1⟩
⟨ρ0(x)e3, w2⟩

...
⟨ρ0(x)e3, wn⟩

 ,

with

Mk =


Ck
11 Ck

12 . . . Ck
1n

Ck
21 Ck

22 . . . Ck
2n

...
...

. . .
...

Ck
n1 Ck

n2 . . . Ck
nn

 ,

and

G =


⟨w1(x) · e3, w1⟩ ⟨w2(x) · e3, w1⟩ . . . ⟨wn(x) · e3, w1⟩
⟨w1(x) · e3, w2⟩ ⟨w2(x) · e3, w2⟩ . . . ⟨wn(x) · e3, w2⟩

...
...

. . .
...

⟨w1(x) · e3, wn⟩ ⟨w2(x) · e3, wn⟩ . . . ⟨wn(x) · e3, wn⟩

 .
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Differentiating equation (40) and noting that

(xTMkX)′ = (Mkx ·X)′ = Mkx
′ ·X +Mkx ·X ′,

we get that

X ′′(t) = K(x, x′),

where

Kj(x, x
′) = Mjx

′ ·X +Mjx ·X ′ + (G ·X)j , for j = 1, 2, ......, n. (41)

We introduce the notation x′ = z, the equation (41) can be written as(
x
z

)′
=

(
z

K(x, z)

)
= A(x, z). (42)

Since A(x, z) is an infinitely differentiable vector field, then by the theory of ordinary differential equations,
we conclude that (42) admits a maximal solution in an interval [0, Tn].

Now, it is necessary to show that the times Tn do not depend on n and that the solutions are uniformly
bounded in Hm to obtain a local solution of the equation using the limit step by a compactness argument.

The following estimation on vn shows that Tn = T is independent of n. We start with the proof of the
following result.

Lemma 4.2.
For all n ∈ N, there exists T∗ > 0 such that

sup
0≤t≤Tn

∥ vn(x, t) ∥2≤∥ v0(x) ∥2 +
g2

N2
∥ ρ0(x) ∥2 . (43)

Proof.
If we multiply by gjn(t) in the equation (36) and add in k, we get that(

d

dt

)
⟨vn, wk⟩+ ⟨(vn · ∇)vn, wk⟩ = ⟨−gρne3, wk⟩(

d

dt

)
⟨vn, wkgjn⟩+ ⟨(vn · ∇)vn, wkgjn⟩ = ⟨−gρne3, wkgjn⟩,

so, we have
⟨vnt , vn⟩+ ⟨(vn · ∇)vn, vn⟩ = ⟨−gρne3, v

n⟩. (44)

Note that we can apply the Stokes formula to the second term of the equation (44),

⟨(vn · ∇)vn, vn⟩ =
∫
Ω

3∑
i=1

vni ∂iv
n · vn

=
3∑

i=1

∫
Ω
vni ∂i

(
|vn|2

2

)

=

∫
Ω

3∑
i=1

∂iv
n
i

|vn|2

2

= 0,
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that is,

⟨(vn · ∇)vn, vn⟩ = 0.

Therefore,

⟨vnt , vn⟩ = ⟨−gρne3, v
n⟩.

On the other hand, considering the following proof equation will help us find a bound for vn as follows

E(t) =
1

2
∥vn∥2 + c

2
∥ρn∥2,

E(t) =
1

2
⟨vn, vn⟩+ c

2
⟨ρn, ρn⟩.

Thus, if we differentiate the above equation, it follows

E′(t) = ⟨vnt , vn⟩+ c⟨ρnt , ρn⟩ =⇒ E′(t) = ⟨−gρn, vn⟩+ c

〈
N2

g
vn, ρn

〉
,

= ⟨−gρn, vn⟩+ c
N2

g
⟨vn, ρn⟩ for c = g2

N2
,

= g⟨−ρn, vn⟩+ g⟨vn, ρn⟩,
= 0.

(45)

Therefore, E′(t) = 0, that is, E(t) is constant, even more E(t) = E(0). Then

1

2
∥vn∥2 + c∥ρn∥2 = ∥v(x, 0)∥2 + c0∥ρ(x, 0)∥2, (46)

where c0 =
g2

N2
. This way, we have

n∑
i=1

| gin(t) |2=∥ vn ∥2=∥ X(t) ∥2,

which tells us that ∥ X(t) ∥2 will not explode in a finite time, as we wanted to show.

Thus, from this lemma, we can conclude that for n fixed, the function vn(x, t) is uniformly bounded in
L2((0, T );L2(Ω)3) independently of n, which implies that it will not explode in a finite time.

On the other hand, we multiply the equation (36) by λkgk and add in k for k = 1, 2, ...n, and we get

⟨vnt , wkgk⟩λk = ⟨−gρne3, wkgk⟩λk − ⟨(vn · ∇)vn, wkgk⟩λk,

⟨vnt , vn⟩m = ⟨−gρn, vn⟩m − ⟨(vn · ∇)vn, vn⟩m,

1

2

(
d

dt

)
∥vn∥2m = ⟨(−gρn − (vn · ∇)vn), vn⟩m. (47)

Now, applying Cauchy’s Inequality, we obtain bounds for each one of the terms on the right-hand side of
the equation (47), that is,

|⟨−gρn, vn⟩m| ≤ ∥gρn∥m∥v∥m,

|⟨vn · ∇⟩vn, vn)m| ≤ c∥v∥3m,

which when replacing them in the equation (47), we have

1

2

(
d

dt

)
∥vn∥2m ≤ c1∥vn∥2m + c2∥gρn∥m,
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where the term ρn is bounded by

ρn(x, t) = ρ0(x) + c

∫ t

0
vn3 (x, s)ds,

∥ρn∥m ≤ ∥ρ0∥m + c

∫ t

0
∥vn3 ∥mds,

≤ ∥ρ0∥m + c

∫ t

0
∥vn∥mds,

≤ ∥ρ0∥m +

∫ t

0

(
1

2
c2 +

1

2
∥vn∥2

)
ds,

≤ ∥ρ0∥m +
c

2
t+

∫ t

0
∥vn∥2ds

≤ ∥ρ0∥m +
c2

2
t+

1

2

∫ t

0
∥vn∥2mds,

then, we have (
d

dt

)
∥vn∥2m ≤ c1∥vn∥2m + c2∥ρ0∥m + c3t+

∫ t

0
∥vn∥2m ds.

Thus, it follows that ∥vn(t)∥m ≤ g(t) for all t < inf(T, T0), where g(t) is the solution of the differential
equation (

d

dt

)
g(t) = c1(g(t))

2 + c2∥ρ0∥m + c3t+

∫ t

0
(g(s))2 ds.

Therefore, considering (46), it follows that vn is bounded in

L∞((0, T∗);L
2(Ω)3) ∩ L2((0, T∗);H

m(Ω)3) for all T∗ > 0. (48)

In this way, we get the following lemma

Lemma 4.3.
For all n ∈ N and for all t ∈ [0, T∗] there exists C > 0 independent of vn such that∫ T

0
∥ vn(x, τ) ∥2m dτ ≤ C(∥ v0(x) ∥, ∥ ρ0(x) ∥, T∗). (49)

Now, we need an estimate for vnt ; for this, let’s see the following result.

Lemma 4.4. For all n ∈ N, there exists T∗ > 0 such that

vnt is bounded in L∞((0, T∗);H
m(Ω)3) for all T∗ > 0. (50)

Proof.
We start from the equation given by (36)

⟨vnt , wk⟩+ ⟨(vn · ∇)vn, wk⟩ = ⟨−gρne3, wk⟩,

Then, we take its derivative to get the following expression

⟨vntt, wk⟩+ ⟨(vnt · ∇)vn, wk⟩+ ⟨(vn · ∇)vnt , wk⟩ = ⟨−gρnt e3, wk⟩,
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which we can also write in terms of P , that is,

⟨vntt, wk⟩+ ⟨P (vnt · ∇)vn, wk⟩+ ⟨P (vn · ∇)vnt , wk⟩ = ⟨−Pgρnt e3, wk⟩,

multiplying by g′jnλk the previous equation, we get the following expression

(vntt, g
′
jnwk)λk + ⟨P (vnt · ∇)vn, g′jnwk⟩λk + ⟨P (vn · ∇)vnt , g

′
jnwk⟩λk

= (−Pgρnt e3, g
′
jnwk)λk,

by adding in k and applying (48) we get

⟨vntt, vnt ⟩m + ⟨(vnt · ∇)vn, vnt ⟩m + ⟨(vn · ∇)vnt , v
n
t ⟩m = ⟨−gρnt e3, v

n
t ⟩m,

On the other hand, as

⟨(vn · ∇)vnt , v
n
t ⟩ = 0 and ρnt (x, t) =

N2

g
vn3 · e3,

then

1

2

d

dt
||vnt ||2 = −⟨(vnt · ∇)vn, vnt ⟩m −N2(vn3 e3, v

n
t )m.

Now, we will take each one of the terms on the right side of the previous equation separately, and we will
find bounds for each of them:

Indeed:

|N2⟨vn3 e3, vnt ⟩m| ≤ N2∥vn3 e3∥m∥vnt ∥m,

≤ N2∥vn∥m∥vnt ∥m,

≤ N2

2
(∥vn∥2m + ∥vnt ∥2m),

≤ N2

2
(∥v(x, 0)∥2m + c0∥ρ(x, 0)∥2m) +

N2

2
∥vnt ∥2m,

therefore

|N2⟨vn3 e3, vnt ⟩m| ≤ N2

2
(∥v(x, 0)∥2m + c0∥ρ(x, 0)∥2m) +

N2

2
∥vnt ∥2m.

Using HÃ¶lder’s inequality generalized, we obtain

| < (vnt · ∇)vn, vnt >m | ≤ ∥vnt ∥m∥∇ · vn∥m∥vnt ∥m,

= C∥vnt ∥2∥vn∥m.

Therefore,

1

2

d

dt
||vnt ||2 ≤ C∥vnt ∥2m∥vn∥m +

N2

2
(∥v(x, 0)∥2m + c0∥ρ(x, 0)∥2m) +

N2

2
∥vnt ∥2m,

≤
(
∥vn∥m +

N2

2

)
∥vnt ∥2m +

N2

2
(∥v(x, 0)∥2m + c0∥ρ(x, 0)∥2m),

Now, using equation (48), we have that

1

2

d

dt
||vnt ||2m ≤ a∥vnt ∥2m + b,
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where a = C +
N2

2
and b =

N2

2
(∥v(x, 0)∥2m + c0∥ρ(x, 0)∥2m). So, we get

1

2

∫ t

0

 1

2

d

dt
||vnt ||2m

a∥vnt ∥2m + b

 ≤ t,

note that if u(t) = ∥vnt ∥2m, then∫ u(t)

u(0)

(
du

au+ b

)
≤ t =⇒ 1

a
ln |au+ b|

∣∣∣∣u(t)
u(0)

≤ t.

Thus,

u(t) ≤ 1

a
eat+ln |au(0)+b| − b,

∥vnt ∥2m ≤ 1

a
eat+ln |∥vnt (0)∥2m+b| − b

a
,

∥vnt ∥2m ≤ 1

a
eat+ln |∥vnt (0)∥2m+b| − b

a
.

Therefore, it follows that vnt in L∞((0, T∗);H
m(Ω)3), as wanted to show.

Now, taking into account equations (48) and (50) and applying the Rellich-Kondrachov Theorem given
by (2.3), we can find a subsequence vn that strongly converges in L2((0, T∗)×Ω), which corresponds to the
following lemma

Lemma 4.5.

vn → v ∈ L2((0, T∗)× Ω) (51)

and

∂tv
n → ∂tv ∈ L2((0, T∗)× Ω). (52)

Since vn is bounded on Hm, then for |α| ≤ m, we have that ∂αv
n is bounded and weakly converges in

L2(Ω). By uniqueness of limits we deduce that v(t) ∈ Hm and ∂αv
n(t) weakly converges in L2(Ω) for all

∂αv(t) and t ≤ T∗.
Note that |v(t)|Hm ≤ lim inf |vn(t)|Hm . Therefore, we have

v ∈ L∞((0, T∗),H
m(Ω)).

5. Existence and Uniqueness of Solutions

Considering the estimations of the previous section, we will state the following existence theorem.

Theorem 5.1. Let Ω be a bounded domain of R3, with smooth boundary, and let v0(x) ∈ Hm(Ω), then there
exists an interval [0, T∗] and functions v(x, t), p(x, t) and ρ(x, t) that satisfy system (24) in QT∗ = Ω× [0, T∗]
in the sense (25), and also satisfy the following properties:

(v, p) ∈ (L∞((0, T∗),X0) ∩ L2((0, T∗)),H
m(Ω)))× L2((0, T∗)),H

m+1(Ω)3),

ρ ∈ L∞((0, T∗),L
2(Ω)),

∂v

∂t
∈ L2((0, T∗),X0(Ω)).

(53)
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Proof.
With these hypotheses we have all the estimates given in (46), (50), (51) and (52), thus obtaining a subse-
quence of {vn}, which we continue to call {vn} and a function v, which satisfies that

vn ⇀ v weak-* in L∞((0, T∗),X0(Ω)),

∂vn

∂t
⇀

∂v

∂t
weakly in L2((0, T∗),X0(Ω)),

vn ⇀ v weakly in L2((0, T∗) ∩Hm(Ω)3),

vn → v strong in L2((0, T∗),X0(Ω)).

(54)

With these convergences, it is easy to see that v satisfies the regularity properties of the theorem. Since in
Banach spaces, the norms are semicontinuous functions, we have that

• ∥ v(·, t) ∥X0(Ω)≤ lim inf
n→∞

∥vn(·, t)∥X0(Ω) ≤ C1, then

v ∈ L∞((0, T∗);X0(Ω)).

• ∥ v(·, t) ∥Hm(Ω)≤ lim inf
n→∞

∥vn(·, t)∥Hm(Ω) ≤ C2, then

v ∈ L2((0, T∗);H
m(Ω)).

•
∥∥∥∥∂v∂t (·, t)

∥∥∥∥
X0(Ω)

≤ lim inf
n→∞

∥ vnt (·, t) ∥X0(Ω)≤ C3, then

vt ∈ L2((0, T∗),X0(Ω)).

• ∥ v(·, t) ∥Hm(Ω)3≤ lim inf
n→∞

∥vn(·, t)∥Hm(Ω)3 ≤ C4, then

v ∈ L2((0, T∗);H
m(Ω)3).

On the other hand, let us show that v satisfies (24). For this, let us see that vn and ρn satisfy (24). Indeed:
Let

ϕ =

m∑
k=1

Hk(t)wk, Hk(t) ∈ C1([0, T∗]), Hk(T∗) = 0. (55)

If we multiply (35) by Hk(t) and add in k from 1 to m, we obtain that

⟨vnt + (vn · ∇)vn + gρne3, ϕ⟩ = 0.

Now, integrating from 0 to T∗, and using integration by parts it follows that∫ T

0
{⟨vn, ϕt⟩+ ⟨vn, (vn · ∇)ϕ⟩+ g⟨ρne3, ϕ⟩} dt+ ⟨vn(0), ϕ(0)⟩ = 0. (56)

The weak convergence of ρn in L2((0, T∗);L
2(Ω)), implies that∫ T∗

0
⟨ρne3, ϕ⟩ dt −−−−→n → ∞

∫ T∗

0
⟨ρe3, ϕ⟩ dt.
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In this way, taking limit as n −→ ∞ in (56), we obtain (24), for all ϕ of the form (55), provided that∫ T∗

0
⟨vn, (vn · ∇)ϕ⟩ dt −−−−→n → ∞

∫ T∗

0
⟨v, (v · ∇)ϕ⟩ dt.

This is evidenced considering vn is uniformly bounded in L∞((0, T∗);X0(Ω)) ; v
n −→ v strongly in L2(QT∗)

and integrating from 0 to T∗ the identity

⟨vn, (vn · ∇)ϕ⟩ − ⟨v, (v · ∇)ϕ⟩ = ⟨vn − v, (v · ∇)ϕ⟩+ ⟨vn, ((vn − v) · ∇)ϕ⟩.

Thus, taking a limit when n → ∞ in (56), we obtain that∫ T

0
{⟨v, ϕt⟩+ ⟨v, (v · ∇)ϕ⟩+ g⟨ρe3, ϕ⟩} dt+ ⟨v(0), ϕ(0)⟩ dt = 0. (57)

Due to the density of the set (55), we have the identity (57).

Theorem 5.2. Uniqueness of the solutions.

Proof.
To demonstrate that the solutions found for the system (21) in its vector form are unique, we define two
solutions denoted by v = (v1, v2, v3) and w = (w1, w2, w3). With scalar pressure fields p1, p2 and densities
ρ1 and ρ2 respectively, which satisfy the conditions of the system (21) with the same initial data. Then, we
take the difference of these two solutions, U = w − v and P = p2 − p1, according to the system (21), it is
verified that

∂U

∂t
= −∇P +

 v · ∇v1 − w · ∇w1

v · ∇v2 − w · ∇w2

v · ∇v3 − w · ∇w3

+

 0
0

−
√
g

N
(ρ2 − ρ1) · e3

 . (58)

From the equation (22) - (23), we also have that

ρ2(x, t)− ρ1(x, t) =

√
g

N

∫ t

0
(w3(x, t)− v3(x, t))ds.

Adding and subtracting the term (v · ∇)w it is verified that

∂U

∂t
= −∇P +

 v · ∇U1 − U · ∇w1

v · ∇U2 − U · ∇w2

v · ∇U3 − U · ∇w3

+

 0
0

−
√
g

N
(ρ2 − ρ1) · e3

 . (59)

Now, multiplying by U , integrating by parts, and using the fact that
1

2

d

dt
∥U∥2 = ⟨ d

dtU,U⟩ and ⟨∇P,U⟩ = 0 and ⟨(v∇)U,U⟩ = 0 to define (58), we get

1

2

d

dt
∥U∥2 =

〈 V · ∇v1 −W · ∇w1

V · ∇v2 −W · ∇w2

V · ∇v3 −W · ∇w3

 , U

〉
+

+
g

N

2
〈 0

0∫ t
0 (w3(x, t)− v3(x, t)) ds

 , U

〉
. (60)

On the other hand, we have the following expression

(V · ∇V )− (W · ∇)W = −(U · ∇)W − (V · ∇)U,
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with ⟨(V · ∇)U,U⟩ = 0. So, we get

1

2

d

dt
∥U∥2 = − g

N

2
〈∫ t

0
(w3(x, t)− v3(x, t)) ds, w3 − v3

〉
− ⟨(U · ∇)w,U⟩ . (61)

In the second term of (61), we can be bound by taking into account the triangular inequality, that is,

|⟨(U · ∇)W,U⟩| ≤ ∥U∥2∥W∥, in this case U ∈ L4 and W ∈ W 1,2.

For the first term of (61), we have the following estimate:∣∣∣∣〈∫ t

0
(w3(x, t)− v3(x, t)) ds, w3 − v3

〉∣∣∣∣
≤
∫
Ω

∣∣∣∣∫ t

0
(w3(x, s)− v3(x, s)) ds

∣∣∣∣ |w3(x, t)− v3(x, t)| dx,

≤ 1

2

∫
Ω

(∫ t

0
(w3(x, s)− v3(x, s) ds

)2

dx+
1

2

∫
Ω
(w3(x, t)− v3(x, t))

2 dx,

≤ 1

2
t

∫
Ω

∫ t

0
(w3(x, s)− v3(x, s))

2 ds dx+
1

2

∫
Ω
(w3(x, t)− v3(x, t))

2 dx,

≤ 1

2
t

∫ t

0

∫
Ω
(w3(x, s)− v3(x, s))

2 dx ds+
1

2

∫
Ω
(w3(x, t)− v3(x, t))

2 dx,

this is ∣∣∣∣〈∫ t

0
(w3(x, t)− v3(x, t)) ds, w3 − v3

〉∣∣∣∣ ≤ 1

2
t

∫ t

0
∥U∥2 ds+

1

2
∥U∥2,

in this way,
1

2

d

dt
∥U∥2 ≤ 1

2
t

∫ t

0
∥U∥2 ds+

1

2
∥U∥2 + ∥U∥2∥W∥. (62)

Now, we consider the initial value problemy′ = f(t, y) = ϕ(t)y + t

∫ t

0
y(s)ds,

y(0) = 0,

(63)

where the solution of the problem (63) is given by y = 0. Then, using the comparison principle, any solution
of the differential inequality

v′ ≤ f(t, v),

with v(0) ≤ 0, which satisfies that v(t) ⩽ 0. Thus, applying (62) it follows that ∥U∥2 = 0, which implies
that V = W .

6. Conclusion

In this paper, we demonstrate the existence and unique solution of a nonlinear system of partial differential
equations related to stratified fluids within a bounded domain in three dimensions. We open the door to
future studies of more general nonlinear systems, considering stratification, heat transfer, and salinity, as
well as exploring some optimization problems whose solutions are constraints to the systems discussed in
our article, following the philosophy of [5]. We could also extend our results to environments that involve
fractional derivatives like in [2], [3], [6] and [21].
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