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Abstract

Recently it has been proven that the multiplication module is a Weak-multiplication module (W−MM).
In this paper, we present some applications of W − MM in neutrosophy theory. n-refined neutrosophic
module M denoted by Mn(I). We proved that Mn(I) is regular and C.P.module. Also, every n-refined
neutrosophic finitely generated ideal is a principal ideal of n-refined the ring R (Rn(I)). We proved that if
Mn(I) is multiplication module over ring Rn(I) and Mn(I) is of type S2; then every f. generated An(I) of
Mn(I) is n-refined multiplication module. Also, if Rn(I) is n-refined neutrosophic ring, so Rn(I) is principal
ideal ring if and only if every n-refined neutrosophic multiplication module Mn(I) is of type S. Finally,
several results and applications have been presented in this paper with some new definitions, examples, and
other properties.

Keywords: Multiplication module; Weak-multiplication module-Neutrosophic ring; Neutrosophic
module; Regular ring.
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1. Introduction

Module theory is a branch of abstract algebra that deals with the study of modules, which are gener-
alizations of vector spaces over fields. Modules provide a framework for studying algebraic structures that
share certain properties with vector spaces but do not necessarily have a field as their underlying structure.
Some researchers define the module as a generalization of a vector space, where instead of working over a
field, one works over a ring. A module consists of an abelian group together with a scalar multiplication
operation defined by the ring. The ring can be a commutative ring with identity or a non-commutative ring.
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In module theory, the concept of multiplication modules [1] refers to modules that have an additional mul-
tiplication operation defined on their elements. The concept of faithful multiplication module [1] that is
annihilator of M equal zero. This concept generalizes the notion of a module by incorporating a multiplica-
tive structure in addition to the module’s additive structure. This type of module has been studied by many
researchers, including Anderson and Al-Shaniafi [2] studied multiplication modules with some properties
of ideals. A generalization of multiplication modules offered by Perez et. al. [3]. Ansari-Toroghy and
Farshadifar [4] obtained some related results regarding the concept of a comultiplication R-module. Azizi
[5] characterized weak points of multiplication modules. Abed et al. [6] worked on several multitype mod-
ules like P-(S. P) Submodules [6], fractional module [7], classical Artinian module [8], injective module [9],
CS-module [10], and other algebraic structures [11]. On the other hand, Smarandache [13] introduced the
idea of a neutrosophic set as a generalization of the Zadeh model’s Fuzzy set [14] as a way to represent and
manipulate imprecise information. This idea came to address the many problems of life that the concept
of the fuzzy set cannot deal with. This idea has gained the admiration of many researchers around the
world, and therefore they have presented many research works aimed at solving the problems of daily life,
including Khan et al. [15] works on an extended overview of neutrosophic set as well as several instances
and extensions. Majumdar introduced an application to decision-making on neutrosophic sets. Al-Quran
et al [17, 18] constructed some works on neutrosophic sets. Following them Al-sharqi et al [19, 20] studied
several properties and structures of neutrosophic sets like real value [25], complex value [21], matrix value
[22], and soft computing value [23] with their applications in real life [24]. Neutrosophic algebra, also known
as neutrosophic set theory or neutrosophic logic, is a mathematical framework that extends fuzzy algebra
theory and fuzzy algebra logic to handle uncertainty and vagueness in decision-making and reasoning. neu-
trosophic algebra has applications in various fields, including control systems, pattern recognition, expert
systems, data analysis, decision-making, and artificial intelligence. It provides a mathematical framework
to model and handle uncertainty and imprecision in these domains. neutrosophic algebra provides a rich
mathematical framework to handle and reason with uncertain and imprecise information, allowing for more
flexible and realistic modeling and decision-making. It has found wide applications in diverse fields where
uncertainty and vagueness are inherent in the data or knowledge. Therefore, there is a lot of research work
on this idea like Smarandache [25]. proposed neutrosophic triplets to introduce the innovative notion of
neutrosophic triplet group. Jun et al. [26] considered the idea of a neutrosophic quadruple BCK/BCI-
number. Abed et al. [27, 28] introduced some neutrosophic algebraic structures, and module theory and
studied their properties and applications. Olgun and Bal [29] give some studies on neutrosophic module
theory. Auad et al. [30, 31] introduced some results of best co-approximation specifications of co-proximal
and co-Chebyshev of unbounded functions in weighted spaces.
We will present a follow-up to these works in this work we will give some applications of theW -multiplication
module in Neutrosophy theory. n-refined Neutrosophic moduleM denoted byMn(I). We proved thatMn(I)
is n-refined Neutrosophic regular and n-refined Neutrosophic C.P. module. Also, every n-refined Neutro-
sophic finitely generated ideal is a principal ideal of n-refined ring R (Rn(I)). Finally, several results and
applications have been presented in this paper with some new definitions, examples, and other properties.
Also, we should be notes all rings in this paper are commutative with 1 and all modules over the ring R
are unital. In this paper, we presented several basic concepts which useful later. Also, we introduced new
results about neutrosophic weak-multiplication module.

2. Preliminaries

Definition 2.1. [6] A ring R is a commutative with 1. If the following are holds R ×M → M(a, b) → ab
such that M is a commutative group:

1. (ab1)b = a(b1b)

2. (a1 + a2)b = a1b+ a2b

3. a(b1 + b2) = ab1 + ab2
4. 1 · b = b = b · 1,
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then M is called R-module.

Definition 2.2. [6] A subset M1 is said to be submodule of M (M1 ≤ M) if closed with (+) and scalar
multiplication:

1. a+ b ∈ M1,∀a, b ∈ M1.

2. ab ∈ M1,∀a ∈ R, b ∈ M1.

Definition 2.3. [13] A neutrosophic S is defined as K = {(ζ, Tk(ζ), Ik(ζ), Fk(ζ)) : ζ ∈ S} ∋ tk, ik, fk : S →
[0, 1].

Definition 2.4. [29] Let (R,+, ·) be a ring and a neutrosophic set denoted by R and I. So Neutrosophic
R = (R(I),+, ·) is called a neutrosophic ring.

Definition 2.5. [29] Let (M,+, ·) be a module over R. Then (M(I),+, ·) is a weak neutrosophic module
over R, and it is called a strong neutrosophic module if it is a module over R(I).

Definition 2.6. [28] Let P = {(Tp(η), Ip(η), Fp(η)) : η ∈ R}. Then P is a neutrosophic ideal if ∀η, θ ∈ R be
a neutrosophic of module over neutrosophic R. Then any neutrosophic subset neutrosophic K of neutrosophic
M is neutrosophic submodule:

1. TP (η − θ) ≥ TP (η) ∧ TP (θ).

2. IP (η − θ) ≥ IP (η) ∧ IP (θ).

3. FP (η − θ) ≤ FP (η) ∨ FP (θ).

4. TP (ηθ) ≥ TP (η) ∨ TP (θ).

5. IP (ηθ) ≥ IP (η) ∨ IP (θ).

6. FP (ηθ) ≤ FP (η) ∧ FP (θ).

Definition 2.7. [1] Let K be a field and A be an algebra over K (A not neccssarily commutative algebra).
Let M be an A-module and it’s called a faithful multiplication A-module if AnnA(M) = 0.

3. Main results

In this part, we will discuss some result and some application in weak-multiplication module in neutro-
sophic set environment. Also, we will support these results with some examples.

Definition 3.1. Let M(I) be a indeterminacy w-multiplication module over neutrosophic ring R(I), we say
Mn(I) is n-refined neutrosophic w-multiplication module (of type Sp) if for p-generated n-refined neutrosophic
submodule An(I) there exists n-refined neutrosophic mapping g : Mn(I) → An(I).

Remark 3.2. We notice that:

(i) Mn(I) is n-refined neutresophic module is type of (S) if each n-refined neutrosophic submodule An(I)
of Mn(I) is an epimorphic image of Mn(I).

(ii) Every n-refined neutresophic semisimple module is type of s, because every n-refined neutr-sophic
semi-simple module has n-refined neutrosophic direct summand of submodules.

Definition 3.3. Any neutrosophic module Mn(I) is called n-refined cyclic neutrosophic module Mn(I) if
for all mI ∈ Mn(I), so Mn(I) = Rn(I)mI.

Definition 3.4. Any module Mn(I) is called C.P. module if every cyclic submodule An(I) is projective
with Mn(I) is n-refined, neatrosephic finitely generated projective module of every n-refined neutrosophic f.
generated submodule is projective.

Recall that Mn(I) is called Zn(I) neutrosophic regular is every n-refined neutrosophic (M = Rx) Sub-
module ( n-refined neutrosophic f.g module) is Projective and direct summand.
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Theorem 3.5. Let Mn(I) be module over Rn(I). Then the following statements are equivalent.

1. Mn(I) is Zn(I) regular.

2. Mn(I) FGP- module.

3. Mn(I) is C.P. Module.

Proof. 1 =⇒ 2. Let An(I) be n-refined neutrosophic f. generated submodule of Mn(I). So An(I) is a direct
summand of Mn(I). i.e. Mn(I) = ⊕An(I). Therefore An(I) is projective. Hence An(I) is an epimorphic
image of Mn(I).
2 =⇒ 3. Clear.
3 =⇒ 1. Assume that An(I) is cycle submodule of Mn(I).Then there exists an epimerphism g : Mn(I) →
An(I).
Note that An(I) is projective, so there is a sequence is n-refined split. Hence An(I) is a direct summand.
Thus Mn(I) is Zn neutrosophic regular.

Definition 3.6. Let Mn(I) be module over Rn(I) and let An(I) be n-refined neutrosophic submodule of
Mn(I). Then An(I) is called pure submodule of Mn(I), if An(I) ∩ Mn(I)Jn(I) = Jn(I)An(I) ∀Jn(I) is
n-refined neutrosophic ideal of Rn(I).

Definition 3.7. Any Mn(I) is called F -regular if ∀An(I) ≤ Mn(I) is n-refined neutrosophic pure.

Recall that An(I) ≤ Mn(I) is called n-rfined neutrosophic strongly pure if for each n-refined neutrosophic
finite sub module, A

′
n(I) of An(I), there exists n-refined neutrosophic homomorphism g : Mn(I) → An(I)

such that f(aI) = aI, aI ∈ An(I).

Remark 3.8. In the following:

(i) Mn(I) is n-refined strongly F. regular if every n-refined neutresuphic submodule An(I) of Mn(I) is
n-refined neutrosophic strongly pure [7].

(ii) Every n-refined neutresaphic strongly F. regular module is n-refined neutrosophic F. regular.

(iii) Zn(I) regular =⇒ F.regular .

Proposition 3.9. Let Rn(I) be ring. Then every finitely generated ideal is principal.

Proof. Let Jn(I) be n-refined finitely generated neutrosoPhic ideal of Rn(I). Then ∃g : Rn(I) → Jn(I) is
an epimorphism. so, we know that Rn(I) is cyclic module. Hence Jn(I) is principal.

Corollary 3.10. Let Mn(I) be module other ring. Suppose that Mn(I) such that ann(a0I) = ann(Mn(I)).
If g : Mn(I) → Rn(a0I) is an epimorphism, so Mn(I) is of type S∞.

Proof. ∀aI ∈ Mn(I), we deline a mapping faI : Rn(a0I) → Rn(aI) by faI(bIa0I) = (bI)(I). then f is
well–define and hence ba0I = ϕ, so bI ∈ ann(a0I) = ann(Mn(I)). Thus bIaI = ϕ. Hence we get Mn(I) is
of type S1 and then is of type S∞.

Proposition 3.11. Let Mn(I) = M(I1, I2, . . . In) be module over p.p. ring Rn(I). If Mn(I) is projective
module (n-refined c.p. module), then Rn(I)⊕Mn(I) is n-refined zn-regular module.

Proof. Let Mn(I) be projective module. Hence Rn(I)⊕Mn(I) is n-refined projective module. But Rn(I) is
n-refined p.p. ring. then Rn(I)⊕Mn(I) is n-refined c.p. module. Also, Rn(I)⊕Mn(I) is n-refined of type
S∞. So Mn(I) is n-refined zn-regular. If Mn(I) is n-refined C.P. module, so, Rn(I) ⊕ Mn(I) is n-refined
C.P. module. On the other hand, if Rn(I)⊕Mn(I) is of type S, hence Rn(I)⊕Mn(I) is n-refined zn-regular
module.

Proposition 3.12. Let Rn(I) ben n-refined ring. So Rn(I) is principal ideal ring if and only if every
n-refined neutrosophic multiplication module Mn(I) is of type S.
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Proof. Assume that Rn(I) is P.I.R. with Mn(I) is n-refined multiplication module. Suppose that An(I)
be submodule of Mn(I). Then there exists n-refined ideal Jn(I) of Rn(I) ∋ An(I) = Jn(I)Mn(I). So
∃aI ∈ Rn(I) ∋ Jn(I) = Rn(I)(aI) ∧ An(I) = (aI)Mn(I). Now we define fB : Mn(I) → An(I) by
f(bI) = (aI)(bI), bI ∈ Mn(I). Then fB is Rn(I)-epimorphism. Conversely, Rn(I) is n-refined neutro-
sophic multiplication module. Hence Rn(I) is P.I.R.

Theorem 3.13. Let Rn(I) be ring. Then if Rn(I) is Bezout ring, any multiplication neutrosophic module
is of type S∞.

Proof. Assume that Rn(I) is n-refined Bezout neutrosophic ring with Mn(I) is multiplication module. If
An(I) is finitely generated submodule of Mn(I), so ∃Jn(I) is n-refined ideal of Rn(I). Such that An(I) =
Jn(I)Mn(I). Hence may be close Jn(I) to finitely generated. Therefore, ∃aI ∈ Rn(I) ∋ Jn(I) = Rn(I)(aI)
and An(I) = Jn(I)Mn(I). Thus f∞ : Mn(I) → An(I) and hence Mn(I) is of type S∞.

Corollary 3.14. Let Mn(I) multiplication module over ring Rn(I). If Mn(I) is of type S2; then every f.
generated An(I) of Mn(I) is n-refined multiplication module.

Proof. Let any 2-generated submodule An(I) of Mn(I). so f : Mn(I) → An(I) is epimorphism. Hence
An(I) is multiplication module. Therefore An(I) is locally cyclic. Suppose that Kn(I) generated by
(K1I,K2I,K3I) inside Mn(I). So Kn(I) = Rn(I)(K1I)+Rn(I)(K2I)+Rn(I)(K3I). Hence k is 2-generated.
This means for each Jn(I) prime ideal of Rn(I). There exists 2-generated submodule An(I) of Mn(I) such
that Anp(I) = knp(I). We have An(I) is multiplication module. So Anp(I) = knp(I) is n-refined cyclic
submodule. Therefore Kn(I) is multiplication module.

Proposition 3.15. Let Mn(I) be faithful multiplication module over ring Rn(I). If Rn(I) is p.p. ring with
Mn(I) is of S1 type, so Mn(I) is a Zn(I)-regular .

Corollary 3.16. Let Mn(I) be faithful multiplication module over p.p. ring Mn(R). If End(Mn(I)) is
regular, then Mn(I) is of type of S∞.

Proposition 3.17. Let Mn(I) be multiplication module, Nn(I) be n-refined submodule of Mn(I). If Mn(I)

has type S∞, then Mn(I)
Nn(I)

has type S∞.

Proof. Suppose that Kn(I) be n-refined submodule of Mn(I) with Nn(I) ≤ Mn(I). So assume that kn(I)
Nn(I)

≤
Mn(I)
Nn(I)

is n-refined faithful generated, kn(I) is also faithful generated submodule of Mn(I). But Mn(I) has

type S∞, so ∃fn(I) : Mn(I) → Kn(I). Also Nn(I) is n-refined invaiant subvmodule of Mn(I). Hence

fn(I)(Nn(I)) ⊆ Nn(I). Thus fn(I) induces epi. fn(I) :
Mn(I)
Nn(I)

→ kn(I)
Nn(I)

.

Theorem 3.18. Let Mn(I) be module has type S∞. So Mnp(I)(I) has type S∞ where Pn(I) is n-refined
prime ideal of Rn(I).

Proof. Suppose that Pn(I) is n-refined prime ideal of Rn(I). Assume that Nn(I) ≤ Mnp(I)(I) Hence
∃Kn(I) ≤ Mn(I), knPn(I)

(I) = Nn(I). So Kn(I)n-refined finitely generated when Nn(I) is also n-refined
finitely generated submodule of Mn(I).
∃fn(I) : Mn(I) → kn(I) ∋ fn(I) induce RnPn(I)

(I)-homomorphism fnPn(I)
(I) : MnPn(I)

(I) → KnPn(I)
(I) by:

fnPn(I)
(I)(mI

tI ) =
fn(I)(m)

tI . Thus fnPn(I)
(I) is an epimorphism.

Remark 3.19. Note that the opposite of theorem 3.18 is not true. Let Rn(I) be regular ring and not
semisimple ring. Hence RnPn(I)

(I) is field, where Pn(I) is prime ideal of Rn(I). Therefore RnPn(I)
(I) is as

Rn(I)-module has type S∞. Thus Rn(I) has no type S, it has type S∞.

Theorem 3.20. Let M
′
n(I) and M

′′
n (I) be two modules have type S. If Mn(I) = M

′
n(I) ⊕M

′′
n (I) is direct

sum, then Mn(I) has type Sn.
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Proof. Suppose that Nn(I) ≤ Mn(I). So Nn(I) = N
′
n(I)⊕N

′′
n (I); N

′
n(I) ≤ Mn(I), N

′′
n (I) ≤ Mn(I). Nn(I) is

finitely n-generated. So N
′
n(I), N

′′
n (I) are n-refined n-generated. So ∃f ′

n(I), f
′′
n (I) ∋ fn(I) : Mn(I) → Nn(I).

Hence f
′
n(I)⊕ f

′′
n (I) is epi.from M

′
n(I)⊕M

′′
n (I) → N

′
n(I)⊕N

′′
n (I).

Corollary 3.21. Let Mn(I) = M
′
n(I)⊕M

′′
n (I) where M

′
n(I) and M

′′
n (I) are Rn(I)-modules and Mn(I) has

type S(S∞). If Hom(M
′
n(I),M

′′
n (I)) = ϕ, then M

′
n(I) has type S(S∞).

Proof. Suppose that N
′
n(I) ≤ M

′
n(I). Hence N

′
n(I) ≤ Mn(I) is finitely generated submodule of Mn(I) and

has type (S∞). Then ∃fn(I) : Mn(I) → Nn(I). Suppose that f
′
n(I) =

fn(I)
Mn(I)

. But Hom(M
′
n(I),M

′′
n (I)) = ϕ,

so fn(I)(M
′
n(I)) ⊆ Mn(I). Hence fn(I)(M

′
n(I)) = N

′
n(I). Thus M

′
n(I) has type S(S∞).

4. Conclusion

In this study, we have developed cyclic, multiplication,and finitely generated modules using the concept
of the neutrosophic set. Additionally, we displayed the recently proposed relations for neutrosophic weak-
multiplication modules along with a few instances and notes. Let Rn(I) be ring. Then each n-refined
finitely generated neutrosophic ideal is principal. Furthermore, suppose that Mn(I) is an n-refined faithful
multiplication neutrosophic module over ring Rn(I). If Rn(I) is p.p. ring with Mn(I) is of S1 type, so
Mn(I) is a Zn(I)-regular. Finally, we presented some examples, remarks and properties about this work in
order to study algebraic structures.
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