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Abstract

In this research, a comparison was made between two methods for estimating a semiparametric regression
model with the presence of an autocorrelation problem, based on a semiparametric partial linear regression
model, which contains a parametric component and a nonparametric component. The two components
were estimated using two methods, the first methods is semi parametric generalized least squares estima-
tors(SGLSE) , the second methods is least squares estimators method(LSEM) .Simulation study show the
first method is beast than the second method by using mean squares of errors (MSE) .
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1. Introduction

The problem of autocorrelation appears in most studies that take form time series data as well as
research that depends on Cross- Section data , especially cross section data that take the form grouping
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of observations ,this problem may arise as a result of deleting some independent variable from the studied
relationship which as a result of inaccurate diagnosis of the relation between response variable and the
independent variables . In addition such a problem may arise as of making adjustments in the data or
resorting to estimating the values of some observations based on the values of other observers, the processes
of adjustment and estimation usually depend on taking the averages of the values of successive observations
, which creates a relationship between the errors of those observations and thus effects the nature of their
distribution. Parametric models have two parts , the first represents the random error term which is a
random component , the second is a non-random part represents by the dependent variable or the response
variable which is related to an independent variable or several independent variables . The dependent
variable is the one to be estimated by one of the parametric or nonparametric methods . Parametric models
are more common as they assume that the dependent variable has a functional formula which was obtained
from pervious information about the regression function .Although it is one of the most important tools for
analyzing data and estimating parametric because it is highly effective in interpreting the results , it was not
able to be sufficient in some cases .As for the nonparametric regression model it focuses on estimating the
regression function directly from the data and does require special assumptions to estimate the parameters
of the linear model. Thus nonparametric regression is more flexible to detect data that may be missing or
in some cases where no prior information is available about the data. Semiparametric regression models
are constructed by mixing parametric and nonparametric models . The semiparametric models is often
used when the parametric hypotheses are not specified and do not achieve consistency property or the
nonparametric models works incompletely.

2. Semiparametric Partial Linear Model

The semi parametric partial linear regression model(PLM) is one of the most important and most widely
used semi parametric models in the field of economics , medicine and environmental studies .This model
has other names as it is called partial parametric model and because belong to one of the categories of the
partial spline it is called partial spline model [3] . Partial linear model is semi parametric model since it
contain both parametric and nonparametric components , it allows easier interpretation of the effect of each
variable and many be preferred to a completely nonparametric regression because of the well-known curse
of dimensionality [5] . This model (PLM) has been extensively studied by researchers and estimation it
in many different ways such as Robinson estimator , spline estimator , kernel estimator , weighted partial
spline ,difference based estimator and various other ways. Here , we will review the most important research
and studies that relied on estimating the model (PLM) . [2] they estimation a model (PLM) by using semi-
parametric two – step stratege , in the first step they used the nonparametric regression estimator (kernel)
to estimate the nonparametric component , while the second step included weighted instrumental variables
method to estimate the parametric component . [6] presented a paper that included the nearest neighbor
estimator to estimate nonparametric part , as for the parametric part it was estimated using least square
and they used data from a partial sample of the National Longitudinal Study (NLSY) for the year 1979 and
the variable included earning , age and education . You , [? ] they made a comparison between two semi
parametric ordinary least squares method and the semiparametric general least squares method foe estimat-
ing the parametric component of the (PLM) model , as for the nonparametric component it was estimated
using B- spline series and they concluded through the simulation results that the semiparametric general
least squares estimators are more efficient than the ordinary least squares estimators . [10] they presented
a paper that included a difference based estimator (DBE) to estimate the parametric component while
the nonparametric component was estimated using kernel estimator , they used the price data for the year
(1977) using five independent variables and one nonparametric variable , they concluded that the estimation
of the parametric component is an efficient asymptotic estimator while the estimator of the nonparametric
components is an ideally aligned estimator . [8] They estimated a model (PLM) using the double penalized
least square method by using smooth spline to estimate the nonparametric component first and applying
the shrinkage penalty to the parametric part secondly to achieve the estimation model ,they explained that
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proposed estimator (DPLS) can be as effective as the Oracle estimator and they also studied and proved that
alignment properties of the estimators when the effects of number of parameters diverge with the sample
size . [4] has estimated the (PLM) model in the presence of the problem of Heteroscedasticity by using
the weighted wavelet method to estimate parametric component and wavelet smooth method for estimating
the nonparametric component , he also studied and demonstrated the alignment properties of the estimator
under appropriate assumptions and proved that the wavelet estimator has weak consistent rates.

A partial linear model is given as follow:

Yi = X ′
iβ + g (ti) + εi , i = 1, 2, . . . , n (1)

Where Yi are response , Xi = (xi1, xi2, . . . , xip)
′ , ti = (ti1, t2i, . . . , tid) are vectors of variable (Xi, ti) are

independent and identically distributed (i.i.d), β = (β1, β2, . . . , βp)
′ is a vector of unknown parameters, g(.)

is a unknown function or smooth function, parameter vector and nonparametric function to be estimated,
and the εi are unobservable random errors.

3. Estimation Methods

3.1. Semiparametric Generalized Least Squares Estimators

One of the basic assumptions that were relied upon in estimating parameter of the linear model is the
lack of autocorrelation between the errors of observations in the sample, in other words :

E (εtεt−s) = 0 , t = 1, 2, . . . , n (2)

But if the economic or social phenomenon includes a self-correlation between the errors of the studied
observations, assumption (2) become as follows :

E (εtεt−s) ̸= 0 (3)

We will assume that the distribution of errors in model (1) follows a first order autocorrelation :

εt = ρεt−1 + ei (4)

where ρ is unknown ((|ρ| > 0) and ei it is Gaussian distribution with a zero mean and variance σ2
ε . As-

sume that wni(t) = {wni (ti, T1, T2, . . . Tn} where Wni(t) are the positive weighted function, for every given
parameter β we define a nonparametric component estimator of g(.) is given by :

ĝ(t, β) =

n∑
i=1

Wni(t)
(
Yi −X ′

iβ
)

(5)

In compensation ĝ(t, β) into model (1), we get Yi = X ′
iβ + ĝ(t, β) + εi, which can be rewritten as follows :

Ỹi = X̃ ′
iβ + ε̃i (6)

Where:

Ỹi = Yi −
n∑

i=1

Wni (ti)Yi , X̃i = Xi −
n∑

i=1

Wni (ti)Xi

ε̃i = g (ti)−
n∑

i=1

Wni (ti) g (ti) + εi −
n∑

i=1

Wnj (ti) εi.
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Wni(t) it is the decreasing distance function suggested by Nadarya - Watson 1964 it is calculated by the
following formula [9] :

Wni(t) =
K
(
t−Ti
h

)
∑n

j=1K
(
t−Ti
h

)
Where Wni(t)

n
i=1 represents the weight series whose sum is equal to one, K(.) is kernel function and hn

represents bandwidth parameter. By writing equation (6) in matrix form:

Ỹ = X̃β + ε̃ (7)

Where Ỹ =
(
Ỹ1, Ỹ2, . . . , Ỹn

)′
, X̃ =

(
X̃1, X̃2, . . . , X̃n

)′
, ε̃ = (ε̃1, ε̃2, . . . , ε̃n)

′ From (7) a semi parametric

least squares estimators for parameter component is:

β̂SLSE =
(
X̃ ′X̃

)−1
X̃ ′Ỹ (8)

Substituting (8) into (6) the estimated residuals can be obtained as :

ε̃i = Ỹi − X̃iβ̂SLSE (9)

Therefore, the autocorrelation coefficient can be estimated as follows:

ρ̂n =

(
n∑

i=1

ε̃2i

)−1 n−1∑
i=1

ε̃i+1ε̃i (10)

By (4) we have :

E
(
εε′
)
= σ2


1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−1

...
...

...
...

...
ρn−1 ρn−2 ρn−3 . . . 1

 = σ2Ω

∴ Ω−1 =
adjΩ

|Ω|
=

1

1− ρ2



1 −ρ 0 0 0 . . . 0 0
−ρ 1 + ρ2 −ρ 0 0 . . . 0 0
0 −ρ 1 + ρ2 −ρ 0 . . . 0 0
0 0 −ρ 1 + ρ2 −ρ . . . 0 0
...

...
...

...
... . . .

...
...

0 0 0 0 0 −ρ 1 + ρ2 −ρ
0 0 0 0 0 . . . −ρ 1


Under the assumption of the autocorrelation, the sum of square errors can be put into the model (7) in

the following form :
ε̃′Ω−1ε̃ = (Ỹ − X̃β)′Ω−1(Ỹ − X̃β) (11)

By taking the first partial derivative with respect to the parameter vector to be estimated, we get :

β̂SGLSE =
(
X̃ ′Ω−1X̃

)−1
X̃ ′Ω−1Ỹ (12)

As for the non-parametric part , it can be estimated by substituting the parametric component in the
equation (5) and it is Nadarya – Watson estimator :

ĝ(t, β) =

n∑
i=1

Wni(t)
(
Yi −X ′

iβ̂SGLSE

)

ĝ(t, β) =

∑n
i=1K

(
t−Ti
h

)(
Yi −X ′

iβ̂SGLSE

)
∑n

i=1K
(
t−Ti
h

) (13)
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3.2. Least Squares Estimators Method

By transformation method for model (6) the form will be as follows [7]:

Ỹi − ρỸi = β
(
X̃i − ρX̃i

)
+ ε̃i − ρε̃i (14)

The above model can be written as follows:

Y ∗
i = X∗

i β + ei (15)

Write (15) in matrix form as:
Y ∗ = X∗β + E (16)

We get least squares estimates by minimizing the sum of the squares of the random error as follow:

min
n∑

i=1

e2i =
n∑

i=1

(Y ∗
i −X∗

i β)
2

= min
(
E′E

)
= (Y ∗ −X∗β)′ (Y ∗ −X∗β)

By taking the first partial derivative of the parameter vector to be estimated, we get :

β̂LSEM =
(
X∗′X∗

)−1
X∗′Y ∗ (17)

As for the non-parametric part, it is estimated according to the previous method replacing the parameter
part only, we get :

ĝ(t) =
n∑

i=1

Wni(t)
(
Y ∗
i −X∗

i β̂SLEM

)
(18)

Sins the random errors are distributed normally with mean zero and constant variance σ2
ε , and define the

estimator of σ2
ε by:

σ̂2
ε =

1

n

n∑
i=1

(
Yi −

(
X ′

iβ̂ + ĝ (ti)
)2

(19)

Noting the replacement of the parameter and non-parameter component in (19) according to the estimation
methods mentioned previously.

4. Simulation Studies

Simulation experiments were carried out using four sample size 20, 30, 60, 100 , and replicates 1000 for
each simulation experiments. We achieved the model yi = xiβ+g (ti)+εi with εi = ρεi−1+ei, i = 1, 2, . . . ,n,
where g (ti) = sin (ti), β = (1, 5)′, the error distribution generated from standard normal distribution
N(0, 1).For the autoregressive coefficient we considered three cases ( ρ = 0.2, ρ = 0.4, ρ = 0.6). The
independent variable xi, ti are generated from uniform distribution with (0, 1).

For the purpose of making a comparison between the estimation methods, We first calculated the para-
metric component β and nonparametric component g (ti) using both SGLSE and LSEM .For the weighted
function, we use the Gaussian kernel for calculated K(.) :

K(u) =
1√
2π

exp
(
−u2

)
, u ∈ (−∞,∞)

The bandwidth parameter (h) is selected by using Cross -Validation (CV):

CVh =
1

n

n∑
i=1

(
Yi −

(
X ′

iβ̂ + ĝ (ti)
)2

∴ ĥ = arg ·min (CVh)
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5. Simulation Results

In this section we calculated the mean squares of error for SGLSE and LSEM for the purpose of comparing
the two methods , the results were as in the table below :

Table 1: The mean squares of error(MSE) for SCLSE, LSME.

n Methods
ρ

0.2 0.4 0.6

20
SGLSE 0.0099 0.0100 0.0095
LSEM 0.0328 0.02436 0.0235

30
SGLSE 0.0412 0.0493 0.0554
LSEM 0.0420 0.0558 0.0541

60
SGLSE 0.0249 0.0267 0.0397
LSEM 0.0313 0.0461 0.0549

100
SGLSE 0.9428 0.9613 0.9430
LSEM 0.9756 0.9903 0.9660

6. Summary and Conclusion

Through the simulation results showed that semiparametric generalized least squares estimators (SGLSE)
is better than the least squares estimators method (LSEM) because it has the least mean squares of error
for all sample size . This study can be made as a basis for expanded future studies , in the event that
there is a problem of heterogeneity of error variance or in the event of a linear multiplicity between the
explanatory variables. Expand the presentation for other semiparametric model methods that are not used
in this research such as Semiparametric binary response model and the semiparametric single – index model
.
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