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Abstract

During 1937 Beurling Showed that any positive infinitely increasing real sequence such that the its first
element precisely greater than one, called a Beurling’s primes. Furthermore, the series of Beurling integers
(or generalized integers) can be constructed using the fundamental theorem of arithmetic. During the
seventieth of the last century, Diamond showed that majority of the arithmetical functions were generalized
to deal with the generalization of the primes and integers. This work aims to create some weird numbers
from a large enough reals So, the reader has to be familiar with Mobius inversion formula of the Pci function.
The challenging of this work is the dealing with an algorithm for generating a weird numbers (or maybe a
primitive weird numbers) from a large enough real numbers x. The idea of this work can be used for an
application of modeling, data simulation and security subjects.
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1. Introduction

Number theory is an important core of the pure mathematics subjects, where it deals either algebraically
with the behaviors of the sequence of numbers and related counting functions or it deals analytically. For
P takes an actual prime {2, 3, 5, . . .} one easly can build the sequence of related positive integers N =
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{1, 2, 3, . . .} by using the sense of the fundamental theorem of arithmetic on P.

This tells us that every number can be represented as a product of primes with a power (i.e. pβ1
1 · pβ2

2 . . . pβk
k

with βk belongs to N ∪ {0} and k belongs to N ). Many other authors have studied the application of the
number theory in different topics. There is no loss of the generality if we write N0, π0, ζ0 . . . these are the
Beurling Zeta function and the Beurling’s counting function to let the reader know (of integers and primes).

2. Beurling’s Prims:

For any real infinite sequence r1, r2, . . . for which r1>1, rk ≤ rk+1. So, Using the sence of the fundamental
theorem of arithmetic, the sequence {1, n1, n2, n3, . . . ...} can be build and it called the set of Beurling’s
integers. Define be the Beurling’s g function of the set N0 ·Ng(x) =

∑
n≤x 1

3. Beurling’s Prim Number Theorem:

Suppose for d > 0, that
N0(x) = ax+

(
x(x)−1

)
(1)

Beurling (see [2]) proved that if q > 3/2, then

π0(x) ∼
x

log log x
(2)

Where
π0(x) =

∑
rjx

1.

In general the above called the generalization of the prime number theorem (PNT).
During demonstrated in the study (see [5]) in1970 that Beurling’s condition is sufficiently acute that (1)

exist for b = 3/2 and (2) fails to function. Diamond in (5) addresses the following issues in his compositions:
If (1) exists with b belongs to (1/3, 2). Then (2) exists. There exist thus positive values r and R so that

each and every x > x0.
He did not give any examples for which (1) holds true with b > 1 but (2) fails. Later, Hall (see [6])

proved for each (r1, r2, b) with r1 ∈ [0, 1], r2 ∈ [1,+∞], b ∈ [0, 1].

A Beurling prime system exists that allows.

(*) N0(x)− dx = O
(
x(x)−1

)
(**) inf inf πg0(x)

(
log log log log x

x

)−1
= r1

(***) π0(x)
(
log log log log x

x

)−1
= r2

In this paper we modified Beurling generalized numbers instances that demonstrate the existence of a
relationship between π0(x), N0(x) and ζ0( s) occur whenever the mathematical behavior of any one of
them is known. Therefore, in this manner the body of research indicates that being aware of ψ0(x),which
leads to know the behaviors of the integers N0(x), then there’s the Beurling’s zeta function to consider :
where ζ0(s) =

∑
n≥1 n

−s where s = σ + it, σ > 1 as follows: In the seventh decade of the last century,
Diamond defined the extension of ζ(s) for a complex variable s = σ + it, for σ > 1 in this article (see [5])
such that:

ζ0(s) =
∑
n≥1

n−s = Πp

(
1− 1

ps

)−1

, (3)
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Figure 1: shows the triangular relation.

Here p is a prime number and the product of Πp is applied all primes. It is obvious that (3) converges
absolutely for σ > 1 (see[5]).

Define the space of arithmetical functions S, f : R→ c such that f(x) is right continuous and constrained
local variation, ∀x ∈ (1,).

Let S+ ⊆ S and for any f in S, f is increasing function. So, if S0 ⊆ S (where S0 = {f ∈ S : f(1) = 0}),
then S0

+ = S ∩ S+.
Now let’s concentrate on a few easy and challenged Beurling’s prime systems:

(i) Assume that K to be collection of prime numbers does not include 2. The set K ssatisfyies the of Beurling
conditions of course. In other words That is; K represents Beurling’s primes. Therefore, Np may be shown
to be the Beurling’s integers ”the basic theorem of arithmetic,” such that Np only contains only the odd
numbers. In reality, this demonstrates that

(πp(x)− 1) ∼ x

log log x
while, Np(x) =

[
x+ 1

2

]
.

This exactly demonstrates the existence a discrete system of Beurling’s prime (πp, Np) in which πp relies
on K and Np relies on the integers Beurling derives from K. Balanzario, now, define a continuous Beurling
counting function

∏
p, according to the literature in his article (see [23]) defined a as follows:

The difficulty of generating Beurling’s integers from Beurling’s prime by using the Fundamental theorem
of arithmetic means that knowledge of the series of generalized primes does not imply knowledge of sequence
of .generalized (or Beurling) integers. The above statistic is explained by the following claims (1).

ζg(s) =

∫ ∞

1−
x−sdNg(x) and −

ζg′(s)

ζg(s)
=

∫ ∞

1−
x−sdψg(x)

Where πg(x) ∼ ψg(x) for σ >
1
2 (see [5]).

As a result of the foregoing, it is clear that :

πpF
+
0

{
f : f is increasing function with

f(1) = 0

}
.

NpF
+
1

{
f : f is increasingfunctionwith

f(1) = 1

}
And Np(x) = eπp . Then the pair orders (πp, Np) is referred to as Beurling’s prime system (see [5]).
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4. liouville’s function:

A part of the main objects of this work is how could we apply some of the arithmetical functions such
as Liouville’s function .

It’s clear that appling such the mention functions is not that easy always. It needs a hard work. This
function is considered one of the most important arithmetic functions in this paper, as it is used to determine
the odd numbers and their relationship to this function and find its algorithm through the definition and
concepts of this function. An impotent example of a completely multiplicative function is liouville’s function
λ which is defined as follows :

we define λ(1) = 1, n = pk
a1 . . . ..pk

ak the definition then λ(n) = (−1)a1+···+ak shows at once that λ is
multiplicative.

Liouville’s function is connected with the Riemann zeta-function by the equation:

ζ(2s)

ζ(s)
=

∞∑
n=1

λ(n)

ns

5. A Few Properties of Power Series:

The broad ideas concepts of complex half plane definitions, integral representations of Dirichlet series,
and the requirements for having Euler products and simple inverses of power series are discussed here. The
Liouville function λ : N → {−1,+1} is the only totally multiplicative function that equals 1 at every prime
.In other words, for all primes p and natural numbers λ(1) = 1 and λ(pn) = −λ(n). Alternatively, λ(n) =
1Ω(n), where Ω(n) is the number of prime elements of n (counting multiplicity).

The Liouville function is a close relative of the Möbius function µ, and most of the material in this
section has a counterpart for µ. However, we concentrate on λ for the sakeof simplicity.

Definition 5.1. F ′′(x) = χ̇ · Fg(x) = χ̇
∑∞

n=1 λ(n) ·
(
int

(
x

1
n

)
− 1

)
Where χ̇ is Characteristic depending

on the out come Fg(x) of. So, χ̇ is either 1 if Fg(x) is weird or 0 otherwise.

The Arithmetical Function F (x)

An arithmetic function known as a Beurling function is described for the generalized prime system. It
is built by employing a specific case of the generalized Chebyshev’s ψ function ψz and might be used to
generate ω-number and ω p-number positive real numbers that are divisible by two and by a power of two.
The mathematical function F (x) is defined in this section. It demonstrates how to obtain ω-number and ω
p -number by passing a big enough real integer.

The Arithmetical Function F (x)

Define the function F : S → N , where S =
{
| x ∈ {xa}a≥1 , such that 1 < x1 ≤ x2 ≤ x3 ≤ · · · and xa

goes to ∞ as a goes to ∞ }.
The set of any real numbers belongs to a sequence xa satisfies the conditions of Beurling’s prime system

( x belongs to R+, where x is greater than a positive number a and F (x) is a natural number).

Formating of F (x)

This work is a matter of complicated process where the function F (x) is build from the Liouville function

formula of Chebyshev’s -function ψ(x) =
∑

n≥1 ϑ
(
e

log log x
n

)
Where ϑ(x) is Chebyshev’s ϑ-function defined

by ϑ(x) =
∑

q≥x log log q For x greater than zero and q runs over all primes less than or equal to x, then

ϑ(x) =
∑
n≥1

λ(n) ψ
(
e

log log x
n

)
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Substituting Beurling’s prime function ψz(x) with
(
int

(
x

1
n

)
− 1

)
, so

F (x) =
∑
n≥1

λ(n)
(
int

(
x

1
n

)
− 1

)
Such that the sum is finite where n is sharply greater than (log log x)(log log 2)−1 Where λ(n) is the

Liouville function and flow (x) is the integer part of x. If looking carefully to F (x) one can see it is
increasing step function with jumps 1 appears only when x ̸= an with a n greater than 1, a and n and are
integers.

Lemma 5.2. The summation
∑

n≥1 λ(n)
(
int

(
x

1
n

)
− 1

)
is vanished for n > log log x

log 2

Note that: Leaving the prove for the reader since it is so easy.

Theorem 5.3. For any real x > e, F ¨(x) = χ̇
∑∞

n=1 λ(n).
(
int

(
x

1
n

)
− 1

)
Define then F (x) either weird

number or zero where F (x) is increasing Step function.

Proof. In order to show the output of F (x) for any large enough x ∈ R we have to show that F (x) is
increasing and step function first that is to show F (x)− F (Y ) > 0. For x, y ∈ R ∝ x > y.

Where let y = x− 1 We take that F (x)− F (Y ) > 0 then

∞∑
n=1

λ(n) ·
(
int

(
x

1
n

)
− 1

)
−

∞∑
n=1

λ(n) ·
(
int

(
y

1
n

)
− 1

)
=

∞∑
n=1

λ(n) ·
(
int

(
x

1
n

)
− 1− int

(
y

1
n

)
+ 1

)
=

∞∑
n=1

λ(n) ·
(
int

(
x

1
n

)
− int

(
y

1
n

))
then

(
int

(
x

1
n

)
− int

(
y

1
n

))
> 0 ∀x ∈ R therefore int(x) ≤ x ≤ int(x) + 1 .

Its enough to show that int(x) − int(y) ≤ 1. Assume for the sake of argoment that for some, n, x ∈
N int(x) > 1 + int(y)

Let p = int(y) then the assumption Implies x
1
n ≥ int(x) > p+ 1 that is

x ≥ (p+ 1)n (4)

However, p ≤ int
(
y

1
n

)
≤ p+1 that is x < (p+1)n +1 therefore, as both sides x ≤ (p+1)n are integers

this is a contradiction that with (4).

Hence 0 ≤ int
(
x

1
n

)
− int

(
y

1
n

)
≤ 1.

Theorem 5.4. For f(n, x) = int
(
x

1
n

)
− int

(
y

1
n

)
, and n, x ∈ N .

f(n, x)

{
1, if x = pn, for some p ∈ N
0, if x ̸= pn, for any p ∈ N

Proof. It’s needed to show that int
(
x

1
n

)
− int

(
y

1
n

)
≤ 1.

Suppose for a contradiction that int
(
x

1
n

)
> 1 + int

(
y

1
n

)
for some, n, x ∈ N .

Let p = int
(
y

1
n

)
then the assumption implies x

1
n ≥ int

(
x

1
n

)
> p+ 1 that is

x ≥ (p+ 1)n (5)
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However, p ≤ int
(
y

1
n

)
≤ p + 1 that is x < (p + 1)n + 1 therefore, as both sides x ≤ (p + 1)n are integers

this is a contradiction that with (1).

Hence 0 ≤ int
(
x

1
n

)
− int

(
y

1
n

)
≤ 1. however int

(
x

1
n

)
and int

(
y

1
n

)
are integers therefore f(n, x) is either

1 or 0 .
Now for x = pn, for some p ∈ N .

Then int
(
x

1
n

)
= p andint

(
y

1
n

)
= int

(
(pn − 1)

1
n

)
< p.

Therefore f(n, x) = 1 if x = pn, for some p ∈ N .
We conclude the proof by demonstrating that wherever x ̸= pn, p ∈ N.f(n, x) = 0

Suppose that int
(
x

1
n

)
− int

(
y

1
n

)
= such that x ̸= pn, 1 for some x . p ∈ N

(
i · eint

(
x

1
n

)
· −1 = int

(
y

1
n

))
Hence, int

(
x

1
n

)
− 1 ≤ int

(
y

1
n

)
< int

(
x

1
n

)
. Let p = int

(
x

1
n

)
we get x

1
n that is,

x ≥ pn (6)

However int
(
y

1
n

)
< p. This is x < pn + 1.

Therefore as both sides are integers
x ≤ pn (7)

From(2) and(3) we get x ≤ pn, p ∈ N .
This is a contradiction therefore f(n, x) = 0 if x ̸= pn forsome p ∈ N . So it’s is increasing and step obvious
that F (x) function.

For any real x > e large enough the output of depends on χ(x) where any number F (x)

came from
∑∞

n=1 λ(n) ·
(
int

(
x

1
n

)
− 1

)
should be either weird or zero by the affection of χ̇(x).

Results, Discussion and future works

It is possible to add and modify the basic function in this work, as it is considered among the theory’s
most significant arithmetic functions of numbers. Moreover, it has sufficient security in terms of application
in the life aspect, as well as in this work there is an applied aspect and a mathematical algorithm that is in
line with the nature and work of the research.
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