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Abstract

The stress-strength S-S method employs a variety of estimation techniques, including maximum likelihood,
shrinkage and least square, to determine and estimate the reliability of a particular system R = P (Y1 < X <
Y2) while the system contains a single component with strength X subject to two stresses, Y1 and Y2. With
the consumption of Monte Carlo simulation and the statistical measurement Mean Squared Error (MSE), the
various estimation methods have been evaluated according to the Restricted Generalized Weibull Distribution
(RGWD), the stresses Y1 and Y2 and the strength X constitute independent, non-identical random variables
in our S-S model.

Keywords: Restricted generalized Weibull distribution; Stress–strength reliability; Maximum likelihood
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1. Introduction

The Stress-Strength S-S reliability model is still commonly used by presenters on quantum and applied
mechanics. Determining the mechanical reliability of a component with strength Y subjected to stress X
presents problems when evaluating the stress-strength (s -s) reliability, including a single component, as
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demonstrated by (R = P (Y < X)).The component of this system will stop performing if and only if the
stress ever exceeds the body’s capacity; [1].

According to (R = P (Y1 < X < Y2)), this deals with the situation where the strength X should both
be more than and less than the stress Y1 and Y2; a person’s blood pressure at all times should be within
these ranges , which were first introduced by Kotz in 2003; [2]. Using existing U- statistical techniques,
Waegeman et al. in 2008 proposed an efficient algorithm for computing P (X < Y < Z) and its variance;
[3]. Wang et al. in 2013 ,under the assumption that the three samples were independent and disconnected,
statistical inference for R = P (Y1 < X < Y2) was performed using nonparametric estimates and the jackknife
empirical likelihood; [4]. For the estimate of R = (Y1 < X < Y2), Amal et al. in 2013 developed the ML
estimator, MOM estimator, Mix. estimator, and the stresses Y1, Y2, and the strength X have distribution
follow Weibull; [5]. When the stresses Y1 and Y2 and the strength X have inverse Rayleigh distribution,
Raheem, S.H., Kalaf, B.A., and Salman, A.N. in 2021, compare the estimation of R = (Y1 < X < Y2); [6].

The failure rate function of the Weibull distribution is monotonic, but it can also be growing or decreasing.
The failure rate is frequently non-monotonic in systems that are more complex, such electronic systems.
Typically, this occurs as a higher failure rate early (referred to as "wear-in") and late (referred to as "wear-
out") in the component duration. This can also be referred to as a "bathtub-shaped" failure rate, or a
"modified bathtub" (MBT) (or "roller coaster") -shaped failure rate if the failure rate limit at time zero is
zero. A lot of the Weibull distribution’s types have been driven by the desire of generating a bathtub-shaped
failure rate function, which is useful in reliability engineering; [7].

It is possible to create generalized Weibull distributions in a variety of methods. Members of this family
typically include the common Weibull model as a special case. The common techniques are briefly described
in the sentences that follow the hazard rate h(t) of the Weibull distribution or a generalized Weibull model
may be increased by a new parameter, or the Weibull random variable may be transformed (linear, inverse,
or log) to generate a new generalized distribution, or by the competing risk approach (minimum of two or
more Weibull variables), or by mixtures of two or more Weibull variables, mixtures of two or more generalized
Weibull variables, mixing a Weibull distribution with a generalized Weibull distribution, etc.; [8] Regular
distributions with bathtub-shaped, unimodal, and a wide range of monotone hazard rates make up the
Generalized Weibull family, a Weibull extension created by including a second shape parameter. It can be
used to model lifespan data from population, survival, and reliability studies, as well as different extreme
value data, and to build isotopes for testing of the exponential composite hypothesis. The traditional Weibull
model was proposed to be altered by Mudholkar and Srivastava in 1993 by the addition of a new parameter;
[9]. Nassar and Eissa examined the characteristics of (GWD) in 2003; [10]. Pal and Woo compare the GWD
with traditional Weibull and Gamma distributions based on the failure rate in 2006; [11].

The following presents the probability density function (PDF) of an r. v. X that is followed by GWD:

f (t;α, λ) = αλtλ−1e−tλ(1− e−tλ)
α−1

t;α, λ > 0 (1)

The cumulative distribution function (CDF) of X is also presented next:

F (t;α, λ) = (1− e−tλ)
α

t;α, λ > 0 (2)

Wherever α refer to unidentified shape parameter and λ identified value denote to scale parameter. When
the scale parameter λ is equal to 1, the distribution previously described will be known as the Restricted
Generalized Weibul Distribution (RGWD).

The mentioned distribution was used to characterize failure time data and can be used to simulate a
wide range of data sets (see Hahn and Shapiro, 1967). Relays, ball bearings, electronic parts, and even some
businesses have had their lifespans approximated with this distribution. The significance of the bathtub
curve in terms of hazards is frequently helpful to think about the function that indicates the chance of failure
at the time when there haven’t been any failures.

Assuming that the random variables Y1, X, Y2 follows the Restricted Generalized Weibul Distribution,
the stress-strength model R = (Y1 < X < Y2) is discussed in this study as an important component of the
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reliability system. In this context, various estimation strategies will be used to estimate the s-s reliability
R of the Restricted Generalized Weibull distribution (RGWD) with Monte Carlo simulations built on the
statistical criterion Mean Squared Error, the recommended estimators were compared.

A r. v. t that is followed by RGWD for t > 0, α > 0 will have (PDF) and (CDF)

f (t;α) = α e−t(1− e−t)
α−1

, (3)

F (t;α) = (1− e−t)
α (4)

At this point, if the RGWD with the relevant parameters is followed by the strength X and stresses Y1 and
Y2, then:

f (x;α1) = α1 e−x(1− e−x)
α1−1

x;α1 > 0 (5)

f (y1;α2) = α2e
−y1(1− e−y1)

α2−1
y1;α2 > 0, (6)

f (y2;α3) = α3e
−y2(1− e−y2)

α3−1
y2; α3 > 0, (7)

The (S-S) reliability is then described in the following ways; [5], and [6].

R = P (Y1 < X < Y2)

= P (X > Y1)− P (X > Y1, X > Y2)∫ ∞

0
Fy1 (x) f (x)dx−

∫ ∞

0
Fy1 (x)Fy2 (x) f (x) dx

Through switching Eqs. (3) and (4) w.r.t random variables and parameters, R becomes:

R =

∫ ∞

0
λ e−y(1− e−y)

λ−1
dy

∫ y

0
α e−x(1− e−x)

α−1
dx

=

∫ ∞

0
λ e−y(1− e−y)

α+λ−1
dy

=
α1

α1 + α2
− α1

α1 + α2 + α3

R =
α1α3

(α1 + α2) (α1 + α2 + α3)
(8)

2. Techniques of estimation R = P (Y1 < X < Y2)

2.1. The maximum likelihood estimator (MLE):
The likelihood function of the experiential sample x1, x2, . . . , xn assumed for RGED(α1), y1, y2, . . . , ym

are experiential samples from RGWD(α2) and y1, y2, . . . , yk are experiential samples from RGWD(α3)

l = L(α1, x) =
n∏

i=1

f(xi)

=

n∏
i=1

α1e
−xi(1− e−xi)

α1−1

= α1
n e−

∑n
i=1 xi

n∏
i=1

(1− e−xi)
α1−1 (9)

Ln taken to both sides yields

Ln(l) = nLnα1 −
n∑

i=1

xi+ (α1 − 1)

n∑
i=1

Ln
(
1− e−xi

)
(10)
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The derivative of Ln(l) regard for α1 and equal the result to zero is shown as below:

dLn(l)

dα1
=

n

α1
+

n∑
i=1

Ln
(
1− e−xi

)
= 0 (11)

Unidentified α1 is estimated by the ML as follows:

α̂1MLE =
−n∑n

i=1 Ln (1− e−xi)
, (12)

Using similar procedures, α̂2MLE and α̂3MLE become:

α̂2MLE =
−m∑m

j=1 Ln (1− e−y1j)
and α̂3MLE =

−k∑k
l=1 Ln (1− e−y2l)

(13)

We note that α̂i1MLE and λ̂MLE biased since E(α̂iMLE) =
Zαi
Z−1 for i = 1, 2, 3 and Z mention to n,m and k.

Hence, α̂iUb =
Z−1
Z

α̂iMLE , determination the unbiased estimator of αi; i = 1, 2, 3.
By substituting the results in (12) and (13) in Eq. (8), we obtain:

R̂MLE =
α̂1MLEα̂3MLE

(α̂1MLE + α̂2MLE) (α̂1MLE + α̂2MLE + α̂3MLE)
(14)

2.2. Shrinkage Estimation Method (Sh)
In this subsection, we consider Thompson’s proposal in 1968 for a shrinkage estimation method, subject to

prior knowledge which is very closed of the exact parameter’s value from prior experiences or studies as initial
value α0 as well as the traditional estimator α̂ub using a factor as shrinkage weight Ψ(α̂ub) , 0 ≤ Ψ(α̂ub) ≤ 1
as follows.

α̂sh = Ψ(α̂ub) α̂ub + (1−Ψ(α̂ub))α0 (15)

Where (1−Ψ(α̂ub)) signifies to trust of α0 and Ψ(α̂ub) mentions to the belief of α̂ub, which could be fixed
value or depends on α̂ub or can be discovered by reducing the MSE for α̂sh; see [12, 13, 14, 15].

In this section, we look at how sample sizes n, m and k affect the shrinkage weight factor in Eq. (15).

Accordingly, let’s assume twice shrinkage weight factors Ψ(α̂iub) = ωi =
3

√∣∣ sinZ
Z

∣∣, and Ψ(α̂iub) = ζi =
β(Z+1,1)
β(Z,1) for i = 1, 2, 3 w.r.t Z(n,mandk), β(., .) refer to Beta function. At that time, two shrinkage estimators

α̂iSh come to be
α̂i Sh1 = ωi α̂iUb + (1− ωi )α0, i = 1, 2, 3 (16)

α̂i Sh2 = ζiα̂iUb + (1− ζi)α0, i = 1, 2, 3 (17)

The agreeing (S-S) reliability employing shrinkage method R̂shj will be

R̂shj =
α̂1shj α̂3 shj

(α̂1 shj + α̂2 shj) (α̂1shj + α̂2 sh1 + α̂3 shj)
, j = 1, 2 (18)

2.3. Least Squares Estimator Method (LS)
The Least Squares estimator, a technique utilized in numerous mathematics and engineering applications,

is covered in this subsection.
The key idea is that it is possible to reduce the amount of squared errors between the imposed simple

values and estimated value; [6].

S =
n∑

i=1

[F (xi)− E (F (xi))]
2 i = 1, 2, 3, . . . , n (19)
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For RGWED, we employ the F (.) as below.

F (xi) = (1− e−xi)
α1

While, E(F (xi)) = Pi;Pi =
i

n+1 , where i = 1, 2, . . . , n

F (xi) = E(F (xi))

(1− e−xi)
α1

=
i

n+ 1

Now, the logarithm is used on both sides

α1Ln(1− e−xi) = LnPi

α1Ln(1− e−xi)− LnPi = 0 (20)

Eqs. (19) and (20) combined will so result in:

S =
n∑

i=1

[
α1Ln(1− e−xi)− LnPi

]
The partial derivatives of the natural logarithm are found to be equal to zero, and we obtain:

dS

dα1
= 2

n∑
i=1

[
α1Ln(1− e−xi) − LnPi

]
Ln(1− e−xi)

n∑
i=1

[
α1 Ln

(
1− e−xi

)
˘LnPi

]
Ln

(
1− e−xi

)
= 0

n∑
i=1

α1Ln
(
1− e−xi

)
Ln

(
1− e−xi

)
=

n∑
i=1

LnPiLn
(
1− e−xi

)

α̂1 LS =

∑n
i=1 LnPiLn

(
1− e−xi

)
(
∑n

i=1 Ln (1− e−xi))2
(21)

Similarly, as well

α̂2 LS =

∑m
j=1 LnPjLn

(
1− e−yj

)
(
∑m

j=1 Ln (1− e−yj))2
, Pj =

j

m+ 1
, j = 1, 2, . . . ,m (22)

α̂3 LS =

∑n
l=1 LnPlLn

(
1− e−zl

)
(
∑k

l=1 Ln (1− e−zl))
2 , P l =

l

k + 1
, l = 1, 2, . . . , k

Applying α̂1 LS , α̂2 LS and α̂3 LS to Eq.(8) gives us approximately R̂LS :

R̂LS =
α̂1lsα̂3 ls

(α̂1 ls + α̂2 ls) (α̂1ls + α̂2 ls + α̂3 ls)
(23)

3. Monte Carlo simulation technique

The proposed s-s reliability estimators were accomplished in section 2 using unlike sample sizes (30, 60,
and 90), established on 1000 duplication via MSE criteria.

In this context, the statistical implications were calculated to compare the performance of the offered
estimators. Following is how a Monte Carlo simulation was employed in this situation; [6, 16, 17].

Step1: Create a random sample that follows the uni f(0, 1) as u1, u2, . . . , un, w1, w2, . . . , wm and v1, v2, . . . , vk.
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Step2: Convert the values of random samples in step (1) to values follows RGWD in relation to the CDF;
F (x):

i.e.;F (x) = (1− e−xi)
α1

ui = (1− e−xi)
α1

xi = −ln
(
1− ui

1
α 1

)
, i = 1, 2, . . . , n

Using a similar strategy, yj and zl generates yj = −ln
(
1− wi

1
α 2

)
and zl = −ln

(
1− vl

1
α 3

)
; j = 1, 2, . . . ,m

and l = 1, 2, . . . , k.
Step3: recall R from Eq.(8).
Step4: Use Eq.(14) to compute the MLE in R.
Step5: Calculate R’s shrinkage estimator using Eq.(18).
Step6: Using Eq.(23), the R Least Squares estimator is used.
Step7: Founded on (L = 1000) duplication, evaluate the MSE,
It was become clear that: MSE = 1

L

∑L
i=1 (R̂i −R)

2
. Any proposed estimators of the true value of R

are denoted by R̂. All of the expected outcomes are shown in the Tables 1 through 8 below:

Table 1: Shows the estimated values of R; α1 = 2 and α2 = 2, α3 = 2, R= 0.16667.

(n,m,k) R̂MLE R̂Sh1 R̂Sh2 R̂LS

(30,30,30) 0.11154 0.14704 0.11334 0.1032

(30,60,30) 0.17473 0.16352 0.17302 0.25189

(30,90,30) 0.17765 0.17306 0.17379 0.32825

(60,30,30) 0.17455 0.16980 0.17466 0.14121

(60,60,30) 0.17781 0.17063 0.17567 0.25070

(60,90,30) 0.19428 0.17662 0.19054 0.34130

(90,30,30) 0.13939 0.15762 0.14068 0.12064

(90,60,30) 0.18383 0.17157 0.18151 0.22390

(90,90,30) 0.15916 0.16571 0.1567 0.26396

(30,30,60) 0.16514 0.16636 0.16705 0.10444

(30,60,90) 0.15527 0.16423 0.15547 0.12056

(30,90,90) 0.16294 0.16551 0.16235 0.15430

(60,30,90) 0.21565 0.18294 0.21690 0.10672

(60,60,90) 0.17693 0.16786 0.17726 0.12818

(90,60,90) 0.17670 0.16915 0.17736 0.13314

(90,90,90) 0.17857 0.16952 0.17844 0.18371
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Table 2: Displays the MSE of R̂ ; α1 = 2 and α2 = 2 , α3 = 2, R = 0.16667.

(n,m,k) MLE Sh1 Sh2 LS Best

(30,30,30) 3.0393e-07 3.8532e-08 2.8439e-07 4.0275e-07 Sh1

(30,60,30) 6.5031e-09 9.873e-10 4.0314e-09 7.2631e-07 Sh1

(30,90,30) 1.2058e-08 4.0858e-09 5.0793e-09 2.6109e-06 Sh1

(60,30,30) 6.2202e-09 9.7941e-10 6.3958e-09 6.4806e-08 Sh1

(60,60,30) 1.2417e-08 1.5724e-09 8.113e-09 7.0613e-07 Sh1

(60,90,30) 7.6225e-08 9.9128e-09 5.7012e-08 3.0495e-06 Sh1

(90,30,30) 7.4423e-08 8.1804e-09 6.7526e-08 2.1184e-07 Sh1

(90,60,30) 2.9445e-08 2.4034e-09 2.204e-08 3.2758e-07 Sh1

(90,90,30) 5.6356e-09 9.2127e-11 9.925e-09 9.4654e-07 Sh1

(30,30,60) 2.3271e-10 9.1032e-12 1.4946e-11 3.8722e-07 Sh1

(30,60,90) 1.2993e-08 5.9301e-10 1.2537e-08 2.1258e-07 Sh1

(30,90,90) 1.3891e-09 1.3308e-10 1.8655e-09 1.5296e-08 Sh1

(60,30,90) 2.3994e-07 2.6483e-08 2.5236e-07 3.5935e-07 Sh1

(60,60,90) 1.0533e-08 1.4193e-10 1.1212e-08 1.4812e-07 Sh1

(90,60,90) 1.0068e-08 6.1679e-10 1.1425e-08 1.1243e-07 Sh1

(90,90,90) 1.4179e-08 8.1532e-10 1.385e-08 2.9033e-08 Sh1

Table 3: Shows the estimated values of R; α1 = 1.5 and α2 = 2, α3 = 2, R= 0.15584.

(n,m,k) R̂MLE R̂Sh1 R̂Sh2 R̂LS

(30,30,30) 0.16988 0.16101 0.16945 0.18768

(30,60,30) 0.12558 0.14710 0.12419 0.21313

(30,90,30) 0.17036 0.16347 0.16601 0.34803

(60,30,30) 0.16142 0.15806 0.16185 0.12863

(60,60,30) 0.18785 0.16078 0.18553 0.29626

(60,90,30) 0.14759 0.15164 0.14573 0.30249

(90,30,30) 0.18306 0.16497 0.18293 0.11517

(90,60,30) 0.12636 0.1453 0.12622 0.16916

(90,90,30) 0.15235 0.15481 0.15026 0.24652

(30,30,60) 0.17148 0.16172 0.17261 0.12764

(30,60,90) 0.14035 0.15288 0.14025 0.11446

(30,90,90) 0.14200 0.15169 0.14108 0.16432

(60,30,90) 0.12974 0.14590 0.13329 0.052855

(60,60,90) 0.17204 0.15898 0.17232 0.11979

(90,60,90) 0.20339 0.16385 0.20330 0.13634

(90,90,90) 0.16999 0.15966 0.16985 0.16393
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Table 4: Displays the MSE of R̂ ; α1 = 1.5 and α2 = 2 , α3 = 2, R = 0.15584.

(n,m,k) MLE Sh1 Sh2 LS Best

(30,30,30) 1.9697e-08 2.6733e-09 1.8514e-08 1.0136e-07 Sh1

(30,60,30) 9.1579e-08 7.6378e-09 1.0017e-07 3.2821e-07 Sh1

(30,90,30) 2.1075e-08 5.8145e-09 1.0336e-08 3.6936e-06 Sh1

(60,30,30) 3.111e-09 4.9309e-10 3.6114e-09 7.4052e-08 Sh1

(60,60,30) 1.0244e-07 2.4403e-09 8.8152e-08 1.9717e-06 Sh1

(60,90,30) 6.8194e-09 1.771e-09 1.0233e-08 2.1504e-06 Sh1

(90,30,30) 7.4046e-08 8.3345e-09 7.3369e-08 1.6546e-07 Sh1

(90,60,30) 8.6933e-08 1.1112e-08 8.7757e-08 1.7721e-08 Sh1

(90,90,30) 1.2175e-09 1.0726e-10 3.1234e-09 8.2222e-07 Sh1

(30,30,60) 2.4446e-08 3.4557e-09 2.812e-08 7.9521e-08 Sh1

(30,60,90) 2.3992e-08 8.7925e-10 2.4309e-08 1.713e-07 Sh1

(30,90,90) 1.9161e-08 1.7254e-09 2.1799e-08 7.1769e-09 Sh1

(60,30,90) 6.8166e-08 9.8832e-09 5.0875e-08 1.0607e-06 Sh1

(60,60,90) 2.6223e-08 9.8528e-10 2.7139e-08 1.2997e-07 Sh1

(90,60,90) 2.2604e-07 6.4099e-09 2.2521e-07 3.8037e-08 Sh1

(90,90,90) 2e-08 1.4563e-09 1.961e-08 6.5305e-09 Sh1

Table 5: Shows the estimated values of R; α1 = 2 and α2 = 1.5, α3 = 3, R= 0.26374.

(n,m,k) R̂MLE R̂Sh1 R̂Sh2 R̂LS

(30,30,30) 0.25104 0.26112 0.25171 0.25310

(30,60,30) 0.24721 0.25967 0.24458 0.37127

(30,90,30) 0.15655 0.22930 0.15598 0.31663

(60,30,30) 0.27373 0.26799 0.2736 0.24285

(60,60,30) 0.29593 0.26797 0.29302 0.39242

(60,90,30) 0.24507 0.25769 0.24257 0.38434

(90,30,30) 0.27407 0.26796 0.27404 0.22199

(90,60,30) 0.25537 0.25942 0.25352 0.32121

(90,90,30) 0.29838 0.27394 0.29427 0.43292

(30,30,60) 0.24816 0.25721 0.25104 0.18017

(30,60,90) 0.32621 0.27710 0.32570 0.24243

(30,90,90) 0.25897 0.26288 0.2584 0.22148

(60,30,90) 0.21618 0.24830 0.22083 0.10822

(60,60,90) 0.25005 0.26051 0.25092 0.21284

(90,60,90) 0.24859 0.26119 0.24978 0.18199

(90,90,90) 0.27986 0.26860 0.27971 0.27180
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Table 6: Displays the MSE of R̂ ; α1 = 2 and α2 = 1.5 , α3 = 3, R = 0.26374.

(n,m,k) MLE Sh1 Sh2 LS Best

(30,30,30) 1.6124e-08 6.8253e-10 1.4453e-08 1.1316e-08 Sh1

(30,60,30) 2.7306e-08 1.6504e-09 3.669e-08 1.1565e-06 Sh1

(30,90,30) 1.1489e-06 1.1859e-07 1.1611e-06 2.7975e-07 Sh1

(60,30,30) 9.9819e-09 1.81e-09 9.7202e-09 4.3635e-08 Sh1

(60,60,30) 1.0362e-07 1.7891e-09 8.574e-08 1.6559e-06 Sh1

(60,90,30) 3.4828e-08 3.6498e-09 4.4808e-08 1.4546e-06 Sh1

(90,30,30) 1.0682e-08 1.7879e-09 1.0623e-08 1.7428e-07 Sh1

(90,60,30) 7.0015e-09 1.8661e-09 1.0429e-08 3.3038e-07 Sh1

(90,90,30) 1.2e-07 1.0412e-08 9.3209e-08 2.8622e-06 Sh1

(30,30,60) 2.426e-08 4.2581e-09 1.6109e-08 6.9835e-07 Sh1

(30,60,90) 3.9025e-07 1.7851e-08 3.839e-07 4.541e-08 Sh1

(30,90,90) 2.2758e-09 7.2601e-11 2.8452e-09 1.7853e-07 Sh1

(60,30,90) 2.2615e-07 2.3818e-08 1.8411e-07 2.4186e-06 Sh1

(60,60,90) 1.8718e-08 1.038e-09 1.6414e-08 2.5909e-07 Sh1

(90,60,90) 2.2949e-08 6.4655e-10 1.948e-08 6.6825e-07 Sh1

(90,90,90) 2.5983e-08 2.3641e-09 2.5507e-08 6.5059e-09 Sh1

Table 7: Shows the estimated values of R; α1 = 3 and α2 = 2.5, α3 = 3.5, R= 0.21212.

(n,m,k) R̂MLE R̂Sh1 R̂Sh2 R̂LS

(30,30,30) 0.22838 0.21845 0.22791 0.2219

(30,60,30) 0.17932 0.20061 0.17869 0.26222

(30,90,30) 0.15552 0.19362 0.15433 0.29624

(60,30,30) 0.16901 0.19893 0.1708 0.1587

(60,60,30) 0.24285 0.21833 0.23991 0.33926

(60,90,30) 0.22279 0.21411 0.21953 0.37613

(90,30,30) 0.23897 0.22250 0.23892 0.17301

(90,60,30) 0.22915 0.21631 0.2266 0.27503

(90,90,30) 0.26591 0.22833 0.26139 0.42365

(30,30,60) 0.20625 0.21336 0.20834 0.12534

(30,60,90) 0.15527 0.19849 0.15618 0.12452

(30,90,90) 0.21120 0.21182 0.21070 0.18494

(60,30,90) 0.20677 0.21068 0.21047 0.083682

(60,60,90) 0.20070 0.21012 0.20158 0.14533

(90,60,90) 0.23813 0.21761 0.23856 0.17953

(90,90,90) 0.19943 0.20922 0.19958 0.19447
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Table 8: Displays the MSE of R̂ ; α1 = 3 and α2 = 2.5 , α3 = 3.5, R = 0.21212.

(n,m,k) MLE Sh1 Sh2 LS Best

(30,30,30) 2.6434e-08 4.0116e-09 2.4929e-08 9.5663e-09 Sh1

(30,60,30) 1.0757e-07 1.3245e-08 1.1176e-07 2.5101e-07 Sh1

(30,90,30) 3.2041e-07 3.4216e-08 3.34e-07 7.0763e-07 Sh1

(60,30,30) 1.8583e-07 1.7388e-08 1.7074e-07 2.8542e-07 Sh1

(60,60,30) 9.4425e-08 3.8589e-09 7.722e-08 1.6165e-06 Sh1

(60,90,30) 1.1379e-08 3.9476e-10 5.483e-09 2.6899e-06 Sh1

(90,30,30) 7.209e-08 1.0777e-08 7.1821e-08 1.53e-07 Sh1

(90,60,30) 2.9012e-08 1.7582e-09 2.0978e-08 3.9574e-07 Sh1

(90,90,30) 2.8932e-07 2.6276e-08 2.4276e-07 4.4745e-06 Sh1

(30,30,60) 3.451e-09 1.5228e-10 1.43e-09 7.5314e-07 Sh1

(30,60,90) 3.232e-07 1.8569e-08 3.129e-07 7.6738e-07 Sh1

(30,90,90) 8.5079e-11 9.1605e-12 2.017e-10 7.3857e-08 Sh1

(60,30,90) 2.8636e-09 2.0648e-10 2.7429e-10 1.6497e-06 Sh1

(60,60,90) 1.3052e-08 4.0121e-10 1.1121e-08 4.4615e-07 Sh1

(90,60,90) 6.7658e-08 3.0151e-09 6.9923e-08 1.0623e-07 Sh1

(90,90,90) 1.6107e-08 8.4161e-10 1.5728e-08 3.1143e-08 Sh1

4. Results and numerical outcomes

In order to estimate reliability R, the least Mean Square Error (MSE) should be computed in the sin-
gle stress-strength model for the Restricted Generalized Exponential Distribution RGED for all n,m, k =
(30, 60, 90) and the suggested estimators will be compared. This demonstrates that the shrinkage estimator
R̂Sh1 is the best when using the prescribed shrinkage weight factors. Sometimes observe a vibration and
disproportion between R̂MLE , R̂Sh2 and R̂LS as well; these three estimators have always come in second best
rank. Additionally, the least squares estimation method in most cases R̂LS is now regarded as the latest
estimator rank.

5. Conclusion

In terms of MSE, the suggested estimate technique R̂Sh1 outperforms the competition and ranks as the
most reliable estimator. It is built on an unbiased estimator and a prior estimate that was constructed on the
authors’ experiences employing the shrinkage weight factor as a function of sample sizes. We recommended
employing this type of estimating technique to estimate the parameters and reliability function as well as
the stress-strength reliability model with various distributions.
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