Comments on the Suzuki type fixed point theorems

Comments on the Suzuki type fixed point theorems

Authors

  • Sehie Park

Keywords:

Banach contraction, Rus-Hicks-Rhoades map, Suzuki type maps, fixed point, quasi-metric, maximal element

Abstract

There have appeared thousands of works about the Banach contraction and its extensions on metric spaces (X, d). Recently, many works on the Rus-Hicks-Rhoades (RHR) maps T : X → X satisfying d(T x, T 2x) ≤ α d(x, T x) on x ∈ X with α ∈ [0, 1) also appeared. In the present article, we show that the so-called Suzuki type maps are RHR maps and the proofs of results of Suzuki and his colleagues can be simplified within a few lines based on our recent works on quasi-metric spaces

References

1 H. Aydi, M. Jellali, E. Karapinar, On fixed point results for α-implicit contractions in quasi-metric spaces and conse-

quences, Nonlinear Anal. Model. Control, 21(1) (2016) 40–56.

2 J.S. Bae, Fixed point theorems for weakly contractive multivalued maps, J. Math. Anal. Appl. 284 (2003) 690–697.

J.S. Bae, E.W. Cho, S.H. Yeom, A generalization of the Caristi-Kirk fixed point theorem and its applications to mapping

theorems, J. Korean Math. Soc. 31 (1994) 29–48.

V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpathian J. Math. 19(1) (2003) 7– 22.

V. Berinde, A. Petrusel, I. Rus, Remarks on the terminology of the mappings in fixed point iterative methods in metric

spaces, Fixed Point Theory, 24(2) (2023) 525–540. DOI: 10.24193/fpt-ro.2023.2.05

S. Cobza¸s, Fixed points and completeness in metric and generalized metric spaces, Jour. Math. Sci. 250(3) (2020) 475–535.

DOI 10.1007/s10958-020-05027-1

H. Covitz, S.B. Nadler, Jr. Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970) 5–11.

J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.

J. Dugundji, A. Granas, Fixed Point Theory I, Polish Scientific Publishers, Warszawa, 1982.

Y. Enjouji, M. Nakanishi, T. Suzuki, A generalization of Kannan’s fixed point theorem, Fixed Point Theory Appl. 1 (2009)

, 10pp.

K. Goebel, W.A. Kirk, Topics in metric fixed point theory, Cambridge Univ. Press 1990.

T.L. Hicks, B.E. Rhoades, A Banach type fixed point theorem, Math. Japon. 24 (1979) 327–330.

V.I. Istratescu, Fixed Point Theory, D. Reidel Pub. Co. 1981

A.A. Ivanov,Fixed points of metric space mappings (in Russian), Isledovaniia po topologii. II, Akademia Nauk, Moskva,

, pp. 5–102.

J. Jachymski, Converses to fixed point theorems of Zermelo and Caristi, Nonlinear Analysis 52 (2003) 1455–1463.

M. Jleli, B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl. 2012:210, 2012.

S. Kasahara, On some generalizations of the Banach contraction theorem, Publ. RIMS, Kyoto Univ. 12 (1976) 427–437.

M. Kikkawa, T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces.

Nonlinear Analysis 69 (2008) 2942–2949.

M. Kikkawa, T. Suzuki, Some similarity between contractions and Kannan mappings, Fixed Point Theory Appl. (2008)

, 8. doi: 10.1155/2007/49749

M. Kikkawa, T. Suzuki, Some similarity between contractions and Kannan mappings, II, Bull. Kyushu Inst. Tech. Pure

Appl. Math. 55 (2008) 1–13.

M. Kikkawa, T. Suzuki, Some notes on fixed point theorems with constants, Bull. Kyushu Inst. Tech. Pure Appl. Math. 56

(2009) 11–18.

W.A. Kirk, Caristi’s fixed point theorem and metric convexity, Colloquium Mathematicum, 36(1) (1976) 81–86.

W.A. Kirk, Contraction mappings and extensions, Chapter 1, Handbook of Metric Fixed Point Theory (W.A. Kirk and B.

Sims, eds.), Kluwer Academic Publ. (2001) 1–34.

Sehie Park, Adv. Theory Nonlinear Anal. Appl. 7 (2023), 67–78. 78

S.B. Nadler, Jr. Multi-valued contraction mappings, Pacific J. Math. 30 (1969) 475-488.

M. Nakanishi1, T. Suzuki, An observation on Kannan mappings, Cent. Eur. J. Math. 8(1) (2010) 170–178. DOI:

2478/s11533-009-0065-9

S. Park, On general contractive-type conditions, J. Korean Math. Soc. 17 (1980) 131–140.

S. Park, Characterizations of metric completeness, Colloquium Mathematicum 49(1) (1984) 21–26,

S. Park, On generalizations of the Ekeland type variational principles, Nonlinear Anal. TMA 39 (2000) 881–889.

S. Park, Forty five years with fixed point theory, J. Fixed Point Theory (2019) Article ID 1: 1–25.

S. Park, Foundations of ordered fixed point theory, J. Nat. Acad. Sci., ROK, Nat. Sci. Ser. 61(2) (2022) 1–51.

S. Park, Relatives of a theorem of Rus-Hicks-Rhoades, Letters Nonlinear Anal. Appl. 1 (2023) 57–63. ISSN 2958-874X

S. Park, Almost all about Rus-Hicks-Rhoades maps in quasi-metric spaces, Adv. Th. Nonlinear Anal. Appl. 7(2) (2023)

–471. DOI 0.31197/atnaa.1185449

S. Park, History of the metatheorem in ordered fixed point theory, J. Nat. Acad. Sci., ROK, Nat. Sci. Ser. 62(2) (2023)

S. Park, All metric fixed point theorems hold for quasi-metric spaces, Manuscript.

S. Park, The use of quasi-metric in the metric fixed point theory, Manuscript.

S. Park, J.S. Bae, Extension of a fixed point theorem of Meir and Keeler, Arkiv f¨or Mat. 19 (1981), 223–228. MR 83e:54048.

Zbl 483.47040.

S. Park, B.E. Rhoades, Comments on characterizations for metric completeness, Math. Japon. 31(1) (1986) 95–97.

I.A. Rus, The method of successive approximations (in Russian), Revue Roum. de Math. Pures et Appl. 17 (1972) 1433–

I.A. Rus, Teoria punctului fix, II, Univ. Babes-Bolyai, Cluj, 1973.

I.A. Rus, Principles and Applications of the Fixed Point Theory (in Romanian), Editura Dacia, Cluj-Napoca, 1979.

I.A. Rus, Picard operators and applications, Scientiae Math. Japon. 58(1) (2003) 191–219.

D.R. Smart, Fixed point theorems, Cambridge Univ. Press, 1974.

T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl. 253 (2001) 440–458.

T. Suzuki, Generalized Caristi’s fixed point theorems by Bae and others, Jour. Math. Anal. Appl. 302(2) (2005) 502–508.

T. Suzuki, A generalized Banach contraction principle that generalizes metric completeness, Proc. Amer. Math. Soc. 136(5)

(2008) 1861–1869.

M. Taskovic, Osnove teorije fiksne tacke (Fundamental Elements of Fixed Point Theory), Matematicka biblioteka 50,

Beograd, 1986.

S. Willard, General Topology, Addison-Wesley, 1970.

Downloads

Published

2023-10-23

Issue

Section

Articles

How to Cite

Comments on the Suzuki type fixed point theorems. (2023). Advances in the Theory of Nonlinear Analysis and Its Application, 7(3), 67-78. https://doi.org/10.17762/atnaa.v7.i3.275