Exploring the Properties, Simulation, and Applications of the Odd Burr XII Gompertz Distribution

Exploring the Properties, Simulation, and Applications of the Odd Burr XII Gompertz Distribution

Authors

  • Nooruldeen Ayad Noori

Keywords:

OBXIIGo distribution; Burr XII distribution; Quantile function; Ordered statistics; Moment MLE

Abstract

This study proposes a new distribution that is more flexible than the corresponding four-parameter distributions called the Odd Burr XII Gompertz (OBXIIGo) distribution. Then various basic statistical properties of the OBXIIGo distribution are investigated and to estimate its parameters MLE is used. In addition, a Monte Carlo simulation study is conducted to evaluate the performance of parameter estimation using the MLE method, and the OBXIIGo distribution is applied to illustrate its uses on two real data sets, demonstrating its adaptability in various application fields. The results demonstrate the flexibility of the OBXIIGo distribution and its ability for auditing modeling and analysis.

References

L. Anzagra, S. Sarpong, S. Nasiru, Odd chen-g family of distributions, Annals of Data Science 9 (2) (2022) 369–391.

H. M. Yousof, A. Z. Afify, S. Nadarajah, G. Hamedani, G. R. Aryal, The marshall-olkin generalized-g family of distributions with applications, Statistica 78 (3) (2018) 273–295.

H. Yousof, M. Mansoor, M. Alizadeh, A. Afify, I. Ghosh, The weibull-g poisson family for analyzing lifetime data, Pakistan Journal of Statistics and Operation Research 16 (1) (2020) 131–148.

A. D. Nascimento, K. F. Silva, G. M. Cordeiro, M. Alizadeh, H. M. Yousof, G. G. Hamedani, The odd nadarajah-haghighi family of distributions: properties and applications, Studia Scientiarum Mathematicarum Hungarica 56 (2) (2019) 185–210.

M. Alizadeh, I. Ghosh, H. M. Yousof, M. Rasekhi, G. Hamedani, The generalized odd generalized exponential family of distributions: Properties, characterizations and application, Journal of Data Science 15 (3) (2017) 443–465.

M. Alizadeh, M. Rasekhi, H. M. Yousof, G. Hamedani, The transmuted weibull-g family of distributions, Hacettepe Journal of Mathematics and Statistics 47 (6) (2018) 1671–1689.

M. A. Nasir, M. C. Korkmaz, F. Jamal, H. M. Yousof, On a new weibull burr xii distribution for lifetime data, Sohag Journal of Mathematics 5 (2) (2018) 47–56.

M. ¸C. Korkmaz, H. M. Yousof, M. Rasekhi, G. G. Hamedani, The odd lindley burr xii model: Bayesian analysis, classical inference and characterizations, Journal of data science 16 (2) (2018) 327–354.

N. Alsadat, V. B. Nagarjuna, A. S. Hassan, M. Elgarhy, H. Ahmad, E. M. Almetwally, Marshall–olkin weibull–burr xii distribution with application to physics data, AIP Advances 13 (9) (2023) 095325.

A. M. Gad, G. G. Hamedani, S. M. Salehabadi, H. M. Yousof, The burr xii-burr xii distribution: mathematical properties and characterizations, Pakistan Journal of Statistics 35 (3) (2019) 229–248.

E. Altun, H. M. Yousof, S. Chakraborty, L. Handique, Zografos-balakrishnan burr xii distribution: regression modeling and applications, International Journal of Mathematics and Statistics 19 (3) (2018) 46–70.74 Mohammed Qasim Ibrahim et. al., Adv. Theory Nonlinear Anal. Appl. 7 (2023), 60-75.

A. Alzaatreh, C. Lee, F. Famoye, A new method for generating families of continuous distributions, Metron 71 (1) (2013) 63–79.

A. A. Khalaf, M. Q. Ibrahim, N. A. Noori, M. A. Khaleel, [0, 1] truncated exponentiated exponential burr type x distribution with applications, Iraq journal of Science 65 (8) (2024) 15.

A. Khalaf, M. Khaleel, Truncated exponential marshall-olkin-gompertz distribution properties and applications, Tikrit Journal of Administration and Economics Sciences 16 (2020) 483–497.

A. S. Hassan, M. A. Khaleel, R. E. Mohamd, An extension of exponentiated lomax distribution with application to lifetime data, Thailand Statistician 19 (3) (2021) 484–500.

A. A. Khalaf, et al., [0, 1] truncated exponentiated exponential gompertz distribution: Properties and applications, AIP Conference Proceedings 2394 (1) (2022).

A. A. Jafari, S. Tahmasebi, M. Alizadeh, The beta-gompertz distribution, Revista Colombiana de Estad´ıstica 37 (1) (2014) 141–158.

R. C. d. Silva, J. J. Sanchez, F. P. Lima, G. M. Cordeiro, The kumaraswamy gompertz distribution, Journal of Data Science 13 (2) (2022) 241–260.

I. W. Burr, Cumulative frequency functions, The Annals of mathematical statistics 13 (2) (1942) 215–232.

N. Akdam, I. Kinaci, B. Saracoglu, Statistical inference of stress-strength reliability for the exponential power (ep) distribution based on progressive type-ii censored samples, Hacettepe Journal of Mathematics and Statistics 46 (2) (2017) 239–253.

T. Bjerkedal, et al., Acquisition of resistance in guinea pies infected with different doses of virulent tubercle bacilli., American Journal of Hygiene 72 (1) (1960) 130–48.

Downloads

Published

2023-12-30

How to Cite

Exploring the Properties, Simulation, and Applications of the Odd Burr XII Gompertz Distribution. (2023). Advances in the Theory of Nonlinear Analysis and Its Application, 7(4), 60-75. https://doi.org/10.17762/atnaa.v7.i4.283