New complex (fuzzy) generalized metric spaces and an application to integral equations

New complex (fuzzy) generalized metric spaces and an application to integral equations


  • Iqra Shereen, Quanita Kiran, Hassen Aydi


Fixed point, New complex (fuzzy) generalized metric space, integral equation


The concepts of a complex-valued new extended b-metric space, a complex-valued new extended rectangular b-metric space and a fuzzy rectangular b-metric space are initiated. We present some xed point results in these settings via dierent contraction type mappings. We also give some examples and as an application we solve an integral equation.


B.C. Dhage, Condensing mappings and applications to existence theorems for the common solution of di erential equations, Bull. Korean Math. Soc. 36 (3) (1999), 565-578.

H. Pathak, B. Fisher, Common xed point theorems with applications in dynamic programming, Glas. Mat. 31 (1996), 321-328.

H. Pathak, S. Mishra, A. Kalinde, Common xed point theorems with applications to non-linear integral equations, Demonstratio Math. 32 (3) (1999), 547-564.

L.A. Zadeh, Information and control. Fuzzy sets, 8(3) (1965), 338 353.

I. Kramosil, J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (5) (1975), 336 344.

A. George, P. Veeramani, On some results in fuzzy metric spaces. Fuzzy sets and systems, 64(3) (1994), 395 39.

S. Heilpern, Fuzzy mappings and xed point theorem. Journal of Mathematical Analysis and Applications, 83(2) (1981), 566 569.

M. Grabiec, Fixed points in fuzzy metric spaces. Fuzzy sets and systems, 27(3) (1988), 385 389.

I.A. Bakhtin, The contraction mapping priquasi-metricuasi metric spaces. Func. An., Gos. Ped. Inst. Unianowsk, 30 (1980), 26 37.

S. Czerwik, Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis, 1(1) (1993), 5 11.

S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces. Atti Del Seminario Matematico E Fisico Uni versita Di Modena, 46 (1998), 263 276.

M.A. Khamsi, Remarks on cone metric spaces and xed point theorems of contractive mappings, Fixed Point Theory Appl. 1 (2010), 315 398.

M.A. Khamsi, N. Hussain, KKM mappings in metric-type spaces, Nonlinear Anal. 73(9) (2010), 3123 3129.

A.C. Ran, M.C. Reurings, A xed point theorem in partially ordered sets and some applications to matrix equations, proceedings of the American Mathematical Society, 132 (5) (2004), 1435 1443.

S. N d ban, Fuzzy b-Metric Spaces. International Journal of Computers Communications Control, 11(2) (2006), 273 281.

A. Azam, B. Fisher, M. Khan, Common xed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim. 32 (3) (2011), 243-253.

S. Shukla, R. Rodriguez-Lopez, M. Abbas, Fixed point results for contractive mappings in complex-valued fuzzy metric spaces, Fixed Point Theory, 19 (2) (2018), 751-774.

I. Demir, Fixed point theorems in complex valued fuzzy b-metric spaces with application to integral equations, Miskolc Mathematical Notes, 22 (1) (2021), 153 171.

A. Mukheimer, Some common xed point theorems in complex valued b-metric spaces, The Scienti c World Journal, Volume 2014, Article ID 587825.

T. Kamran, M. Samreen, Q. UL Ain, A generalization of b-metric space and some xed point theorems. Mathematics, 5(2) (2017), 19.

N. Ullah, M.S. Shagari, A. Azam, Fixed Point Theorems in Complex Valued Extended b-Metric Spaces, Moroccan Journal of Pure and Applied Analysis, 5(2) (2019), 140-163.

Z. Mustafa, V. Parvaneh, M.M.M. Jaradat, Z. Kadelburg, Extended Rectangular b- Metric Spaces and Some Fixed Point Theorems for Contractive Mappings, Symmetry, 11 (2019), 594,

M. Asim, M. Imdad, S. Radenovi c, Fixed Point Results in Extended Rectangular b - Metric Spaces with an Application, U.P.B. Sci. Bull., Series A, 81 (2) (2019).

N. Ullah, M.S. Shagari, Fixed Point Results in Complex Valued Rectangular Extended b-Metric Spaces with Applications December 2020Mathematical Analysis and Convex Optimization, 1(2) (2020), 107 120.







How to Cite

New complex (fuzzy) generalized metric spaces and an application to integral equations. (2023). Advances in the Theory of Nonlinear Analysis and Its Application, 7(5), 107-129.