Direct method of solving nonlinear ordinary differential equations through known functions
Keywords:
Nonlinear ordinary differential equations, Special functions, Hermite equation, Legendre’s equation, Laguerre’s equationAbstract
In this work, we develop a systematic procedure to obtain the general solutions of a class of nonlinear ordinary differential equations (ODEs) directly through the special functions or other known functions. By introducing a suitable transformation in the state variable/dependent variable of the given nonlinear ODE, we can relate it to one of the the special function equations, including Hermite’s equation, Legendre’s equation, and Laguerre’s equation or other equations solvable through known functions, including isochronous and limit cycle solutions. This procedure can be further generalized to higher order nonlinear ODEs. Obtaining the general solutions of the nonlinear ODEs with the help of special functions is new to the literature to our knowledge.
References
P.J. Olver, Applications of Lie Groups to differential Equations. New York: Springer (1986).
G.W. Bluman, S.C. Anco, Symmetry and Integration Methods for Differential Equations. New York: Springer (2002).
G.W. Bluman, J.D. Kumei, Symmetry and Differential Equations. New York: Springer (1989).
M. Prelle, M. Singer, Elementary first integrals of differential equations, Trans. Am. Math. Soc. 279, (1983), 215-229. doi:10.1090/S0002-9947-1983- 0704611-X.
G. Darboux, Meemoire sur les equations differentielles algebriques du premier ordre et du premier degre, Bull. Sci. Math. 2, (1878), 60-96, 123-144, 151- 200.
C.G. Jacobi, Sul principio dellultimo moltiplicatore e suo uso come nuovo principio generale di meccanica, Giornale Arcadico di Scienze, Lettere ed Arti 99, (1844), 129-146.
C.G. Jacobi, Vorlesungen uber Dynamik. Nebst funf hinterlassenen Abhandlungen desselben herausgegeben von A Clebsch, Berlin: Druck und Verlag von Georg Reimer (1886).
V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, On the complete integrability and linearization of certain second order nonlinear ordinary differential equations. Proc. R. Soc. A 461, (2005), 2451-2476.
V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, On the complete integrability and linearization of nonlinear ordinary differential equations - Part II: Third order equations, Proc. R. Soc. A 462, (2006), 1831-1852.
V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, On the complete integrability and linearization of nonlinear ordinary differential equations - Part III: Coupled first order equations, Proc. R. Soc. A 465, (2009), 585-608.
J. Llibre, X. Zhang, On the Darboux integrability of polynomial differential systems, Qual. Theory Dyn. Syst. 11, (2011), 129-144.
C. Muriel, J.L. Romero, First integrals, integrating factors and symmetries of second-order differential equations, J. Phys. A, Math. Theor. 42, (2009), 365207. (doi:10.1088/1751-8113/42/36/365207)
C. Muriel, J.L. Romero, Nonlocal symmetries, telescopic vector fields and symmetries of ordinary differential equations. SIGMA. 8, (2012), 106.
M.C. Nucci, P.G. Leach, The Jacobi last multiplier and applications in mechanics. Phys. Scr. 78, (2008), 065011.
S.V. Meleshko, On linearization of third-order ordinary differential equations, J. Phys. A: Math. Gen. 39, (2006), 15135-45.
N. Euler, M. Euler, Sundman symmetries of nonlinear second-order and third-order ordinary differential equations, J. Nonlinear Math. Phys. 11, (2004), 399- 421.
N. Euler, T. Wolf, Pgl. Leach, M. Euler, Linearisable third-order ordinary differential equations and generalised Sundman transformations: the case X ′′′ = 0. Acta Appl. Math. 76, (2003), 89-115.
L.G.S. Duarte, I.C. Moreira, F.C. Santos, Linearization under non-point transformations. J. Phys. A: Math. Gen. 27, (1994), L739-43.
V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, A unification in the theory of linearization of second-order nonlinear ordinary differential equations. J. Phys. A: Math. Gen. 39, (2006), L69-76.
C. Muriel, J.L. Romero, Nonlocal transformations and linearization of second-order ordinary differential equations. J. Phys. A: Math. Theor. 43, (2010), 434025.
V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, Unusual Linard-type nonlinear oscillator. Phys.Rev.E 72, (2005), 066203.
E. Pinney, The Nonlinear Differential Equation y ′′ + p(x)y + cy−3 = 0. Proc. Am. Math. Soc. 1, (1950), 681.
H.R.Jr. Lewis, Classical and Quantum Systems with Time-Dependent Harmonic-Oscillator-Type Hamiltonians. Phys. Rev. Lett. 18, (1967), 510.
H.A. Buchdahl, A relativistic uid spheres resembling the Emden polytrope of index 5. Ap. J. 140, (1964), 1512 - 1516.