Zipper Fractal Functions with Variable Scalings

Zipper Fractal Functions with Variable Scalings

Authors

  • . VİJAY, A. K. B. CHAND

Keywords:

Fractals, zipper smooth fractal function, topological isomorphism, Schauder basis, linear operator

Abstract

Zipper fractal interpolation function (ZFIF) is a generalization of fractal interpolation function through an improved version of iterated function system by using a binary parameter called a signature. The signature allows the horizontal scalings to be negative. ZFIFs have a complex geometric structure, and they can be non-differentiable on a dense subset of an interval I. In this paper, we construct k-times continuously differentiable ZFIFs with variable scaling functions on I. Some properties like the positivity, monotonicity, and convexity of a zipper fractal function and the one-sided approximation for a continuous function by a zipper fractal function are studied. The existence of Schauder basis of zipper fractal functions for the space of k-times continuously differentiable functions and the space of p-integrable functions for p ∈ [1,∞) are studied. We introduce the zipper versions of full Müntz theorem for continuous function and p-integrable functions on I for p ∈ [1,∞).

References

V.V. Aseev, On the regularity of self-similar zippers, 6th Russian-Korean International Symposium on Science and Tech- nology, KORUS-2002 (June 24-30, 2002, Novosibirsk State Techn. Univ. Russia, NGTU, Novosibirsk), Part 3 (Abstracts), 2002, p.167.

V.V. Aseev, A.V. Tetenov, and A.S. Kravchenko, On self-similar Jordan curves on the plane, Sib. Math. J. 44(3) (2003), 379–386.

M.F. Barnsley, Fractal functions and interpolation, Constr. Approx., 2(1) (1986), 303–329.

M.F. Barnsley and A.N. Harrington, The calculus of fractal interpolation functions, J. Approx. Theory, 57(1) (1989), 14–34.

S.N. Bernstein, Sur les recherches recentes relatives à la meilleure approximation des fonctions continues par les polynômes, in Proc. of 5th Inter. Math. Congress, 1 (1912), 256–266.

P. Borwein and T. Erdelyi, Polynomials and polynomial inequalities, Springer-Verlag, New York, 1996.

P. Borwein and T. Erdelyi, The Full Müntz Theorem in C[0,1] and L 1 (0,1), J. London Math. Soc., 54 (1996), 102–110.

A.K.B. Chand and G.P. Kapoor, Generalized cubic spline fractal interpolation functions, SIAM J. Numer. Anal., 44(2) (2006), 655–676.

A.K.B. Chand, N. Vijender, P. Viswanathan, and A .V Tetenov, Affine zipper fractal interpolation functions, BIT Num. Math., 60 (2020), 319–344.

E.W. Cheney, Approximation theory, AMS Chelsea Publishing Company, Providence, RI, 1966.

P.J. Davis, Interpolation and Approximation, Dover, 1975.

C. Heil, A basis theory primer, Birkhäuser, Bostan, 2011.

J.E. Hutchinson, Fractals and self-similarity, Indiana U. Math. J., 30(5) (1981), 713–747.

S. Jha, A. K. B. Chand, and M. A. Navascu´ es, Approximation by shape preserving fractal functions with variable scaling, Calcolo, 58(8) (2021). https://doi.org/10.1007/s10092-021-00396-8

B. Mandelbrot, Fractals: Form, Chance and Dimension, W. H. Freeman, San Francisco, 1977.

Ch. H. Müntz, Uber den approximationssatz von Weierstrass, in H. A. Schwarz’s Festschrift, Berlin, (1914), 303–312.

M.A. Navascues, Fractal polynomial interpolation, Z. Anal. Anwend, 24(2) (2005), 1–20.

M.A. Navascues, Fractal approximation, Complex Anal. Oper. Theory, 4(4) (2010), 953–974.

M.A. Navascues, Fractal bases for L p spaces, World Scientific Publishing Company, 20(2) (2012), 141–148.

M.A. Navascues, Affine fractal functions as bases of continuous functions, Quaestiones Mathematicae, 37(3) (2014), 415–428.

M. A. Navascues and A. K. B. Chand, Fundamental sets of fractal functions, Acta Appl. Math., 100 (2018), 247–261.

M.A. Navascues, P. Viswanathan, A. K. B. Chand, M. V. Sebastián, and S. K. Katiyar, Fractal bases for banach spaces of smooth functions, Bull. Aust. Math. Soc., 92(3) (2015), 405–419.

V. Operstein, Full Müntz Theorem in L p (0,1), J. Approx. Theory, 85 (1996), 233–235.

K. M. Reddy, Some aspects of fractal functions in geometric modelling, Ph.D. Thesis, IIT Madras, 2018.

S. Schonefeld, Schauder basis in spaces of differentiable functions, Bull. Amer. Math. Soc., 75 (1969), 586–590.

L. Schwartz, Etude des sommes D’Exponentielles, Hermann, Paris, 1959.

A.R. Siegel, On the Müntz-Szász Theorem for C[0,1], Proc. Amer. Math. Soc., 36 (1972).

O. Szász, Uber die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen, Math. Ann., 77 (1916), 482–496.

O. Szász, On closed sets of rational functions, Ann. Mat. Pura. Appl., 34 (1953), 195–218.

A.V. Tetenov, On self-similar Jordan arcs on a plane, Sib. Zh. Ind. Mat., 7(3) (2004), 148–155.

A.V. Tetenov, Self-similar Jordan arcs and graph-directed systems of similarities, Siberian Math. J., 47(5) (2006), 940–949.

A.V. Tetenov, M. Samuel and D. A. Vaulin, Self-similar dendrites generated by polygonal systems in the plane, Sib. Elektron. Mat. Izv., 14 (2017), 737–751.

P. Viswanathan, M.A. Navascu´ es, and A.K.B. Chand, Associate fractal functions in Lp -spaces and in one-sided uniform approximation, Journal of Mathematical Analysis and Applications, 433(2) (2016), 862–876.

H.Y. Wang and J.S. Yu, Fractal interpolation functions with variable parameters and their analytical properties, J. Approx. Theory, 175 (2013), 1–18.

K. Yosida, Functional analysis, Berlin Heidelberg, New York, 1980.

Downloads

Published

2023-08-01

Issue

Section

Articles

How to Cite

Zipper Fractal Functions with Variable Scalings. (2023). Advances in the Theory of Nonlinear Analysis and Its Application, 6(4), 481-501. https://atnaea.org/index.php/journal/article/view/172