Well-posed problems for the Laplace-Beltrami operator on a punctured two-dimensional sphere

Well-posed problems for the Laplace-Beltrami operator on a punctured two-dimensional sphere

Authors

  • Baltabek KANGUZHİN, Karlygash DOSMAGULOVA*

Keywords:

Laplace-Beltrami operator, two-dimensional punctured sphere, well-posed problems, Green's functions for elliptic equations

Abstract

An arbitrary point is removed from a three-dimensional Euclidean space on a two-dimensional sphere. The new well-posed solvable boundary value problems for the corresponding Laplace-Beltrami operator on the resulting punctured sphere are presented. To formulate the well-posed problems some properties of Green's function of the Laplace-Beltrami operator on a two-dimensional sphere are previously studied in detail.

References

Vishik M.I. On general boundary value problems for elliptic differential equations, Proceedings of the Moscow Mathematical Society, 1952, vol.1, pp.187-246.

Pavlov B.S. The theory of extensions and explicitly soluble models, Russian Math. Surveys, 1987, 42:6, 127-168. DOI:10.1070/RM1987v042n06ABEH001491

Kokebaev B.K., Otelbaev M., Shynybekov A.N. On the theory of restriction and extension of operators, I. Izv Akad NaukKaz SSR, Ser Fiz-Mat. 1982, 5:24.

Kokebaev B.K., Otelbaev M., Shynybekov A.N. On questions of extension and restriction of operators. Dokl Akad Nauk SSSR. 1983, 271(6), pp.1307-1310.

Kokebaev B.K., Otelbaev M., Shynybekov A.N. On the theory of restriction and extension of operators, II. Izv Akad NaukKaz SSR, Ser Fiz-Mat. 1983, 110(1):24.

Kanguzhin B., Akanbay Y., Kaiyrbek Z. On the uniqueness of the recovery of the domain of the perturbed Laplace operator // Lobachevskii Journal of Mathematics, 2022, 43(6). pp. 1532-1535. ISSN 1995-0802 DOI: 10.1134/S1995080222090116

Kanguzhin B.E., Tulenov K.S. Correctness of the definition of the Laplace operator with delta-like potentials // Complex Variables and Elliptic Equations, 2022, 67(4), pp. 898-920. DOI:10.1080/17476933.2020.1849164

Kanguzhin B., Fazullin Z. On the localization of the spectrum of some perturbations of a two-dimensional harmonic oscillator // Complex Variables and Elliptic Equations, 2021, 66(6-7), pp. 1194-1208. DOI: 10.1080/17476933.2021.1885386

Kanguzhin B.E., Tulenov K.S. Singular perturbations of Laplace operator and their resolvents // Complex Variables and Elliptic Equations, 2020, 65(9), pp. 1433-1444. DOI:10.1080/17476933.2019.1655551

Abduakhitova G.E., Kanguzhin B.E. The correct definition of second order elliptic operators with point interactions and their resolvents // Siberian Advances in Mathematics, 2020, 30(3), pp. 153-161. DOI:10.3103/s1055134420030013

Kanguzhin B.E. Changes in a finite part of the spectrum of the Laplace operator under delta-Like perturbations. Differential Equations // 2019, 55(10), pp.1328- 1335. DOI:10.1134/S0012266119100082

Zhapsarbayeva L.K., Kanguzhin B.E., Konyrkulzhaeva M.N. Self-adjoint restrictions of maximal operator on graph // Ufa Mathematical Journal, 2017, 9(4), pp.35-43. DOI:10.13108/2017-9-4-35

Kanguzhin B., Nurakhmetov D., Tokmagambetov N. On green function’s properties // International Journal of Mathematical Analysis, 2013, 7(13-16), pp.747-753. DOI:10.12988/ijma.2013.13073

Kanguzhin B.E., Aniyarov A.A. Well-posed problems for the Laplace operator in a punctured disk. Mathematical Notes, 2011, 89(5), 819-829. DOI:10.4213/mzm8767

Kanguzhin BE, Tokmagambetov NE. Resolvents of well-posed problems for finite rank perturbations of the polyharmonic operator in a punctured domain. Siberian Math J. 2016;57(2):265-273. DOI:10.17377/smzh.2016.57.209.

Hobson E.W. The theory of spherical and ellipsoidal harmonics. Cambridge at the University Press. 1931.

Feng D., Yuan X. Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in Mathematics, Springer New York Heidelberg Dordrecht London. ISSN 1439-7382 ISBN 978-1-4614-6659-8 ISBN 978-1-4614-6660-4 (eBook) DOI:10.1007/978-1-4614-6660-4

Abramowitz, M. and Stegun, C. A. (Eds.). ”Legendre Functions” and ”Orthogonal Polynomials.” Ch. 22 in Chs. 8 and 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 331-339 and 771-802, 1972.

Gradshteyn I.S., Ryzhik I.M. Table of Integrals, Series, and Products Seventh Edition. Academic Press is an imprint of Elsevier, ISBN-13: 978-0-12-373637-6

Downloads

Published

2023-08-01

Issue

Section

Articles

How to Cite

Well-posed problems for the Laplace-Beltrami operator on a punctured two-dimensional sphere. (2023). Advances in the Theory of Nonlinear Analysis and Its Application, 7(2), 428-440. https://atnaea.org/index.php/journal/article/view/81